首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At present there are no known procedures for preventing or treating infectious diseases of corals. Toward this end, the use of phage therapy has been investigated. Lytic bacteriophages (phages) were isolated for two bacterial pathogens that are responsible for coral diseases, Vibrio coralliilyticus, which is the causative agent of bleaching and tissue lysis of Pocillopora damicornis, and Thalosomonas loyaeana, which causes the white plague-like disease of Favia favus. By using these phages in controlled aquaria experiments, it was demonstrated that each of these diseases could be controlled by the pathogen-specific phage. The data indicate that initially the phages bind to the pathogen in seawater and are then brought to the coral surface where they multiply and lyse the pathogen. The phages remained associated with the coral and could prevent subsequent infections. These data suggest that phage therapy has the potential to control the spread of infectious coral diseases.  相似文献   

2.
Fineran  B. A. 《Protoplasma》1979,98(3):199-221
Summary The haustorium of the root hemi-parasiteExocarpus bidwillii has tracheary elements that contain protein granules suspended within the lumen of the cell. The differentiation of these graniferous tracheary elements has been studied by transmission electron microscopy based mainly on tracheary elements formed during secondary growth of the haustorium. The vascular cambium of the haustorium is unusual in differentiating tracheary elements and some parenchyma centripetally and a few parenchyma cells centrifugally but no phloem. The cambial initials contain the usual complement of organelles and in the active state vacuoles are small and the groundplasm of the cell is rather opaque. Differentiating tracheary elements are distinguished from developing parenchyma by the early appearance of granules within the cytoplasm and the presence of small vacuoles and only a few lipid bodies. The granules arise amid local masses of endoplasmic reticulum (ER) and are initiated as small swellings of the cisternae in which the matrix material of the granule accumulates. Continuity between the membrane sac of the granule and ER is often maintained as small tubular connections. By the stage the cell is fully expanded the granules are well developed and during the subsequent phase of secondary wall formation they undergo only a small amount of growth. The secondary wall is initiated on the primary wall as low ridges that soon expand circumferentially into the stalked bands of the mature cell. Lignification begins early and spreads progressively centrifugally throughout the band. Microtubules are closely associated with the developing bands and dictyosomes are usually also common in the vicinity. Once the secondary wall thickenings are developed the cell enters a phase of senescence and the components of the protoplast, with the exception of the granules, become smaller and eventually disappear. Disintegration of cell contents occurs rapidly on disappearance of the tonoplast and the release of the contents of the vacuole into the cytoplasm. The granules remain unchanged throughout senescence and on death of the cell they persist as naked structures in the lumen.Sabbatical visitor 1977.  相似文献   

3.
Twenty six phages infected with Escherichia coli O157:H7 were screened from various sources. Among them, nine caused visible lysis of E. coli O157:H7 cells in LB liquid medium. However, prolonged incubation of E. coli cells and phage allowed the emergence of phage-resistant cells. The susceptibility of the phage-resistant cells to the nine phages was diverse. A rational procedure for selecting an effective cocktail of phage for controlling bacteria was investigated based on the mechanism of phage-resistant cell conversion. Deletion of OmpC from the E. coli cells facilitated the emergence of cells resistant to SP21 phage. After 8 h of incubation, SP21-resistant cells appeared. By contrast, alteration of the lipopolysaccharide (LPS) profile facilitated cell resistance to SP22 phage, which was observed following a 6-h incubation. When a cocktail of phages SP21 and SP22 was used to infect E. coli O157:H7 cells, 30 h was required for the emergence of cells (R-C) resistant to both phages. The R-C cells carried almost the same outer membrane and LPS components as the wild-type cells. However, the reduced binding ability of both phages to R-C cells suggested disturbance of phage adsorption to the R-C surface. Even though R-C cells resistant to both phages appeared, this work shows that rational selection of phages has the potential to at least delay the emergence of phage resistance.  相似文献   

4.
We describe a novel filamentous phage, designated VGJ phi, isolated from strain SG25-1 of Vibrio cholerae O139, which infects all O1 (classical and El Tor) and O139 strains tested. The sequence of the 7,542 nucleotides of the phage genome reveals that VGJ phi has a distinctive region of 775 nucleotides and a conserved region with an overall genomic organization similar to that of previously characterized filamentous phages, such as CTX phi of V. cholerae and Ff phages of Escherichia coli. The conserved region carries 10 open reading frames (ORFs) coding for products homologous to previously reported peptides of other filamentous phages, and the distinctive region carries one ORF whose product is not homologous to any known peptide. VGJ phi, like other filamentous phages, uses a type IV pilus to infect V. cholerae; in this case, the pilus is the mannose-sensitive hemagglutinin. VGJ phi-infected V. cholerae overexpresses the product of one ORF of the phage (ORF112), which is similar to single-stranded DNA binding proteins of other filamentous phages. Once inside a cell, VGJ phi is able to integrate its genome into the same chromosomal attB site as CTX phi, entering into a lysogenic state. Additionally, we found an attP structure in VGJ phi, which is also conserved in several lysogenic filamentous phages from different bacterial hosts. Finally, since different filamentous phages seem to integrate into the bacterial dif locus by a general mechanism, we propose a model in which repeated integration events with different phages might have contributed to the evolution of the CTX chromosomal region in V. cholerae El Tor.  相似文献   

5.
The mechanism of the initial steps of bacteriophage infection in Lactococcus lactis subsp. lactis C2 was investigated by using phages c2, ml3, kh, l, h, 5, and 13. All seven phages adsorbed to the same sites on the host cell wall that are composed, in part, of rhamnose. This was suggested by rhamnose inhibition of phage adsorption to cells, competition between phage c2 and the other phages for adsorption to cells, and rhamnose inhibition of lysis of phage-inoculated cultures. The adsorption to the cell wall was found to be reversible upon dilution of the cell wall-adsorbed phage. In a reaction step that apparently follows adsorption to the cell wall, all seven phages adsorbed to a host membrane protein named PIP. This was indicated by the inability of all seven phages to infect a strain selected for resistance to phage c2 and known to have a defective PIP protein. All seven phages were inactivated in vitro by membranes from wild-type cells but not by membranes from the PIP-defective, phage c2-resistant strain. The mechanism of membrane inactivation was an irreversible adsorption of the phage to PIP, as indicated by adsorption of [35S] methionine-labeled phage c2 to purified membranes from phage-sensitive cells but not to membranes from the resistant strain, elimination of adsorption by pretreatment of the membranes with proteinase K, and lack of dissociation of 35S from the membranes upon dilution. Following membrane adsorption, ejection of phage DNA occurred rapidly at 30°C but not at 4°C. These results suggest that many lactococcal phages adsorb initially to the cell wall and subsequently to host cell membrane protein PIP, which leads to ejection of the phage genome.  相似文献   

6.
Chlamydia belong to the group of obligate intracellular bacteria that reside in a membrane bound vacuole during the entire intracellular phase of their life cycle. This vacuole called inclusion shields the bacteria from adverse influences in the cytosol of the host cell like the destructive machinery of the cell‐autonomous defence system. The inclusion thereby prevents the digestion and eradication in specialised compartments of the intact and viable cell called phagolysosomes or autophagolysosomes. It is becoming more and more evident that keeping the inclusion intact also prevents the onset of cell intrinsic cell death programmes that are activated upon damage of the inclusion and direct the cell to destruct itself and the pathogen inside. Chlamydia secrete numerous proteins into the inclusion membrane to protect and stabilise their unique niche inside the host cell. We will focus in this review on the diverse attack strategies of the host aiming at the destruction of the Chlamydia‐containing inclusion and will summarise the current knowledge on the protection mechanisms elaborated by the bacteria to maintain the integrity of their replication niche.  相似文献   

7.
The interaction between male-specific RNA phages and bacterial cells as well as the complete life cycle of RNA phages in the host cells are complicated phenomena. In this study, a mathematical model is proposed to describe the kinetics of RNA phage production in batch culture. The model consists of several important considerations: (1) adsorption and desorption of phages on cell pili, (2) injection and transport of viral RNA, (3) viral protein synthesis, (4) phage maturation, and (5) cell lysis. Experimental data of MS2 RNA phage production in E. coli C 300o bacteria culture were used to evaiuate the model parameters. Reasonably good fit was obtained between the model and one set of data. However, simulation study based on the estimated parameter values revealed a discrepancy between experimental observation and model prediction. It seems that variation both in F-piliation and in the competence of cells to be infected by phages through different phasae of growth must be taken into account in order to make the model useful.  相似文献   

8.
PIT CONNECTION FORMATION IN THE RED ALGA PSEUDOGLOIOPHLOEA   总被引:1,自引:0,他引:1  
Pit connection formation in the marine red alga Pseudogloiophloea confusa was studied with the electron microscope. The process of formation occurs in 2 stages. First, a septum forms as an annular ingrowth from the lateral walls. Lomasomes are associated with the centripetal accretion of wall material. The completed septum contains a large rimmed aperture, bounded by the continuous plasmalemma, and through which the cytoplasm is continuous from cell to cell. In the second stage, a highly structured plug is formed which completely blocks the aperture. The plug is condensed on flattened vesicles which lie parallel to one another and which traverse the aperture. The mature plug is composed of granules 50–100 A in diameter and surrounded by several dense layers which appear to enclose an 80 A limiting membrane. Once the pit connection is formed, no material is seen to traverse it.  相似文献   

9.
Recognition of the bacterial host and attachment to its surface are two critical steps in phage infection. Here we report the identification of Gp108 as the host receptor‐binding protein of the broad host‐range, virulent Listeria phage A511. The ligands for Gp108 were found to be N‐acetylglucosamine and rhamnose substituents of the wall teichoic acids of the bacterial cell wall. Transmission electron microscopy and immunogold‐labelling allowed us to create a model of the A511 baseplate in which Gp108 forms emanating short tail fibres. Data obtained for related phages, such as Staphylococcus phages ISP and Twort, demonstrate the evolutionary conservation of baseplate components and receptor‐binding proteins within the Spounavirinae subfamily, and contractile tail machineries in general. Our data reveal key elements in the infection process of large phages infecting Gram‐positive bacteria and generate insights into the complex adsorption process of phage A511 to its bacterial host.  相似文献   

10.
Streptococcus pneumoniae bacteriophages (phages) rely on a holin–lysin system to accomplish host lysis. Due to the lack of lysin export signals, it is assumed that holin disruption of the cytoplasmic membrane allows endolysin access to the peptidoglycan. We investigated the lysis mechanism of pneumococcal phage SV1, by using lysogens without holin activity. Upon phage induction in a holin deficient background, phage lysin was gradually targeted to the cell wall, in spite of lacking any obvious signal sequence. Our data indicate that export of the phage lysin requires the presence of choline in the teichoic acids, an unusual characteristic of pneumococci. At the bacterial surface, the exolysin remains bound to choline residues without inducing lysis, but is readily activated by the collapse of the membrane potential. Additionally, the activation of the major autolysin LytA, which also participates in phage‐mediated lysis, is equally related to perturbations of the membrane proton motive force. These results indicate that collapse of the membrane potential by holins is sufficient to trigger bacterial lysis. We found that the lysin of phage SV1 reaches the peptidoglycan through a novel holin‐independent pathway and propose that the same mechanism could be used by other pneumococcal phages.  相似文献   

11.
Imamovic L  Muniesa M 《PloS one》2012,7(2):e32393

Background

The bacteriophage life cycle has an important role in Shiga toxin (Stx) expression. The induction of Shiga toxin-encoding phages (Stx phages) increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA.

Methodology/Principal Findings

The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA) were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction.

Conclusions/Significance

Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and in the emergence of new pathogenic strains.  相似文献   

12.
Antibiotic resistance represents a global health challenge. The emergence of multidrug-resistant (MDR) bacteria such as uropathogenic Escherichia coli (UPEC) has attracted significant attention due to increased MDR properties, even against the last line of antibiotics. Bacteriophage, or simply phage, represents an alternative treatment to antibiotics. However, phage applications still face some challenges, such as host range specificity and development of phage resistant mutants. In this study, using both UPEC and non-UPEC hosts, five different phages were isolated from wastewater. We found that the inclusion of commensal Escherichia coli as target hosts during screening improved the capacity to select phage with desirable characteristics for phage therapy. Whole-genome sequencing revealed that four out of five phages adopt strictly lytic lifestyles and are taxonomically related to different phage families belonging to the Myoviridae and Podoviridae. In comparison to single phage treatment, the application of phage cocktails targeting different cell surface receptors significantly enhanced the suppression of UPEC hosts. The emergence of phage-resistant mutants after single phage treatment was attributed to mutational changes in outer membrane protein components, suggesting the potential receptors recognized by these phages. The findings highlight the use of commensal E. coli as target hosts to isolate broad host range phage with infectivity against MDR bacteria.  相似文献   

13.
The Journey of Malaria Sporozoites in the Mosquito Salivary Gland   总被引:11,自引:0,他引:11  
The life cycle of malaria parasites in the mosquito vector is completed when the sporozoites infect the salivary gland and are ready to be injected into the vertebrate host. This paper describes the fine structure of the invasive process of mosquito salivary glands by malaria parasites. Plasmodium gallinaceum sporozoites start the invasion process by attaching to and crossing the basal lamina and then penetrating the host plasma membrane of the salivary cells. The penetration process appears to involve the formation of membrane junctions. Once inside the host cells, the sporozoites are seen within vacuoles attached by their anterior end to the vacuolar membrane. Mitochondria surround, and are closely associated with, the invading sporozoites. After the disruption of the membrane vacuole, the parasites traverse the cytoplasm, attach to, and invade the secretory cavity through the apical plasma membrane of the cells. Inside the secretory cavity, sporozoites are seen again inside vacuoles. Upon escaping from these vacuoles, sporozoites are positioned in parallel arrays forming large bundles attached by multilammelar membrane junctions. Several sporozoites are seen around and inside the secretory duct. Except for the penetration of the chitinous salivary duct, our observations have morphologically characterized the entire process of sporozoite passage through the salivary gland.  相似文献   

14.
Four bacteriophages (C2, C2F, E3, and E16P) belonging to morphological group C3 and one belonging to morphological group A3 (E16B) were purified by deuterium oxide gradient centrifugation and cesium chloride gradient centrifugation. Morphological group C3 phages had a densityd=1.534–1.541 and group A3 phage (E16B) had a densityd=1.492 in CsCl. Phages of morphological group C3 isolated onEnterobacter sakazakii (C2, C2F) and onErwinia herbicola (E3, E16P) were compared withSalmonella newport phage 7-11 with respect to host-range, genome size, antigenic relatedness, and ultraviolet and heat susceptibility. Phages C2 and C2F could multiply inEnterobacter cloacae, E. sakazakii, Erwinia herbicola, E. rhapontici, andLevinea malonatica; whereas phages E3, E16P, and 7-11 could multiply on these same species and onEscherichia coli and severalSalmonella serotypes. Molecular weights of phage DNAs were determined to be 58×106 (C2), 60×106 (7-11), 67×106 (E3), and 39×106 (E16B).All studied phages of morphological group C3 (includingSalmonella newport phage 7-11) were neutralized by anti-phage C2 serum. Despite differences in neutralization kinetics and in ultraviolet and heat sensitivities, these phages of morphological group C3 constitute one phage species. Phage E16B (morphological group A3) had a host-range limited toEnterobacter cloacae, Erwinia herbicola, andE. rhapontici; it was antigenically unrelated to the preceding phage group C3, and showed ultraviolet and heat susceptibility close to that of coliphage T4.  相似文献   

15.
Biological characteristics of three isolated phages (SR1, SR2, and SR3) lytic against three Bradyrhizobium japonicum strains were studied. These phages had no cross-infectivity among the host strains. Phage morphology indicates that they belonged to Siphoviridae (long noncontractile tail; SR1 and SR2) and Podoviridae (short tail; SR3) classes of bacteriophages. Lytic cycle of phages studied under identical conditions showed a distinct adsorption rate (67.3–99.1%), latent period (150–300 min), rise period (60–150 min), and burst size (110–200 pfu/cell). Stability in liquids and inactivation by osmotic shock, thermal, and ultraviolet irradiation were also distinct in this heterogeneous phage group. Influence of soil factors such as temperature, soil moisture, soil pH, and degree of phage adsorption to the soil on phage survival was determined. Major percent of free infective phages were obtained after desorption of phages from soil. Overall, temperature appeared to be the most important parameter affecting rhizobiophage survival in the soil.  相似文献   

16.
A clonal population of pathogenic Vibrio parahaemolyticus O3 : K6 serovar has spread in coastal waters, causing outbreaks worldwide since 1996. Bacteriophage infection is one of the main factors affecting bacterial strain concentration in the ocean. We studied the occurrence and properties of phages infecting this V. parahaemolyticus pandemic strain in coastal waters. Analysing 143 samples, phages were found in 13. All isolates clustered in a closely related group of podophages with at least 90% nucleotide sequence identity in three essential genes, despite distant geographical origins. These bacteriophages were able to multiply on the V. parahaemolyticus pandemic strain, but the impact on host concentration and subsequent growth was negligible. Infected bacteria continued producing the phage but were not lysogenized. The phage genome of prototype strain VP93 is 43 931 nucleotides and contains 337 bp direct terminal repeats at both ends. VP93 is the first non‐Pseudomonas phage related to the ΦKMV‐like subgroup of the T7 supergroup. The lack of a major effect on host growth suggests that these phages exert little control on the propagation of the pandemic strain in the environment. This form of phage growth can be modelled if phage‐sensitive and ‐resistant cells that convert to each other with a high frequency are present in clonal cultures of pandemic V. parahaemolyticus.  相似文献   

17.
Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents?   总被引:15,自引:3,他引:12  
Many parasitic DNA elements including prophages and plasmids synthesize proteins that kill the cell after infection by other phages, thereby blocking the multiplication of the infecting phages and their spread to other nearby cells. The only known function of these proteins is to exclude the infecting phage, and therefore to protect their hosts, and thereby the DNA elements themselves, against phage contagion. Many of these exclusions have been studied extensively and some have long been used in molecular genetics, but their molecular basis was unknown. The most famous of the phage exclusions are those caused by the Rex proteins of λ prophage. The Rex exclusions are still not completely understood, but recent evidence has begun to lead to more specific models for their action. One of the Rex proteins, RexA, may be activated by a DNA-protein complex, perhaps a recombination or replication intermediate, produced after phage infection. In the activated state, RexA may activate RexB, which has been proposed to be a membrane ion channel that allows the passage of monovalent cations, destroying the cellular membrane potential, and killing the cell. We now understand two other phage exclusions at the molecular level which use strategies that are remarkably similar to each other. The parasitic DNA elements responsible for the exclusions both constitutively synthesize enzymes that are inactive as synthesized by the DNA element but are activated after phage infection by a short peptide determinant encoded by the infecting phage. In the activated state, the enzymes cleave evolutionarily conserved components of the translation apparatus, in one case EF-Tu, and in the other case tRNALys. Translation is blocked and development of the phage is arrested. A myriad of different phage-exclusion systems are known to exist and many of these may also be specific for highly conserved cellular components, furnishing generally useful enzymes for biochemical and biomedical research.  相似文献   

18.
利用噬菌体表面展示抗体库对不同血清处理U251细胞吸附的抗体进行差异筛选,筛选获得血清饥饿细胞吸附的阳性噬菌体克隆96个和血清饥饿后恢复血清培养细胞吸附的阳性噬菌体克隆82个。细胞免疫组化检测发现应答反应差异较大的抗体2个,即血清饥饿培养细胞特异反应的抗体1个(11号抗体)和血清饥饿后恢复血清培养细胞特异反应的抗体1个(2号抗体),其中2号抗体在恢复血清培养细胞中的应答反应强于血清饥饿培养细胞,是一个血清应答基因蛋白特异抗体,且在血清饥饿后恢复血清培养不同时间的U251细胞中具有一定的特异性反应。该研究为寻找与细胞周期调控有关的因子奠定了基础,同时对肿瘤的诊断和治疗研究也有重要意义。  相似文献   

19.
We report here the cloning of a human cell cycle gene capable of complementing a temperature-sensitive (ts) S-phase cell cycle mutation in a Chinese hamster cell line. Cloning was performed as follows. A human genomic library in phage lambda containing 600,000 phages was screened with labeled cDNA synthesized from an mRNA fraction enriched for the specific cell cycle gene message. Plaques containing DNA inserts which hybridized to the cDNA were picked, and their DNAs were assayed for transient complementation in DNA transformation experiments. The transient complementation assay we developed is suitable for most cell cycle genes and indeed for many genes whose products are required for cell proliferation. Of 845 phages screened, 1 contained an insert active in transient complementation of the ts cell cycle mutation. Introduction of this phage into the ts cell cycle mutant also gave rise to stable transformants which grew normally at the restrictive temperature for the ts mutant cells.  相似文献   

20.
结核病仍旧威胁着全球人类健康,中国是结核病高发国家之一,寻求新的药物和疫苗势在必行。随着对噬菌体研究的深入,分枝杆菌噬菌体成为结核病新型药物发现和药敏实验的研究热点之一。噬菌体进入宿主菌体内,以裂解和溶源两种途径进入循环。以分枝杆菌的溶源性噬菌体为例,综述了分枝杆菌噬菌体整合和裂解分子机理。分枝杆菌溶源性噬菌体的整合需噬菌体基因组的附着位点attachment site(attP),宿主菌分枝杆菌基因组的附着位点attachment site(attB),整合酶integrase(Int)和整合宿主因子integration host factor(mIHF)。部分溶源性噬菌体如Ms6进入裂解循环,复制转录组装成新的子代噬菌体,在裂解素(Lysin)和穿孔素(Holin)的协同作用下裂解宿主菌,释放子代噬菌体。目前国内未见对分枝杆菌噬菌体的研究报道。研究分枝杆菌噬菌体整合及裂解机理对结核病治疗新药开发有一定的启示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号