首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis dwf4 is a brassinosteroid (BR)-deficient mutant, and the DWF4 gene encodes a cytochrome P450, CYP90B1. We report the catalytic activity and substrate specificity of CYP90B1. Recombinant CYP90B1 was produced in Escherichia coli, and CYP90B1 activity was measured in an in vitro assay reconstituted with NADPH-cytochrome P450 reductase. CYP90B1 converted campestanol (CN) to 6-deoxocathasterone, confirming that CYP90B1 is a steroid C-22 hydroxylase. The substrate specificity of CYP90B1 indicated that sterols with a double bond at positions C-5 and C-6 are preferred substrates compared with stanols, which have no double bond at the position. In particular, the catalytic efficiency (k(cat)/K(m)) of CYP90B1 for campesterol (CR) was 325 times greater than that for CN. As CR is more abundant than CN in planta, the results suggest that C-22 hydroxylation of CR before C-5alpha reduction is the main route of BR biosynthetic pathway, which contrasts with the generally accepted route via CN. In addition, CYP90B1 showed C-22 hydroxylation activity toward various C(27-29) sterols. Cholesterol (C27 sterol) is the best substrate, followed by CR (C28 sterol), whereas sitosterol (C29 sterol) is a poor substrate, suggesting that the substrate preference of CYP90B1 may explain the discrepancy between the in planta abundance of C27/C28/C29 sterols and C27/C28/C29 BRs.  相似文献   

2.
Exposure of MCF-7 breast cancer cells to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes an elevated cytochrome P450 content and a marked increase in the microsomal hydroxylation of 17 beta-estradiol (E2) at the C-2, C-4, C-15 alpha, and C-6 alpha positions. In this study we investigated the involvement of cytochromes P450 of the 1A gene subfamily in this metabolism of E2. Hydroxylation at each of these four positions of E2 was inhibited by P450 1A-subfamily inhibitors, alpha-naphthoflavone, benzo[a]pyrene, and 7-ethoxyresorufin. Northern blots showed that treatment of MCF-7 cells with TCDD resulted in production of the 2.6-kb CYP1A1 mRNA, but not the 3.0-kb CYP1A2 mRNA. Immunoblot analyses with anti-P450 1A antibodies confirmed the production of P450 1A1 protein in TCDD-treated MCF-7 cells. Anti-rat P450 1A IgG inhibited the hydroxylation of E2 at C-2, C-15 alpha, and C-6 alpha, but not hydroxylation at C-4. E2 hydroxylation by human cytochromes P450 1A1 and P450 1A2 was assessed in experiments with microsomes from Saccharomyces cerevisiae after transformation with cDNAs encoding the two cytochromes. The major hydroxylase activities of expressed human P450 1A1 were at the C-2, C-15 alpha, and C-6 alpha positions of E2; expressed human P450 1A2 catalyzed hydroxylation predominately at C-2. While both expressed P450s 1A1 and 1A2 had minor hydroxylase activities at the C-4 position, neither catalyzed a low-Km hydroxylation at C-4 similar to that observed with microsomes from TCDD-treated MCF-7 cells. These results provide strong evidence that P450 1A1 catalyzes the hydroxylations of E2 at the C-2, C-15 alpha, and C-6 alpha in incubations with microsomes from TCDD-treated MCF-7 cells, but suggest TCDD may also induce a cytochrome P450 E2 4-hydroxylase that is distinct from P450 1A1 or P450 1A2.  相似文献   

3.
The biotransformation of 7alpha-hydroxy-ent-kaur-16-ene (epi-candol A) by the fungus Gibberella fujikuroi gave 7alpha,16alpha,17-trihydroxy-ent-kaur-16-ene and a seco-ring B derivative, fujenoic acid, whilst the incubation of candicandiol (7alpha,18-dihydroxy-ent-kaur-16-ene) and canditriol (7alpha,15alpha,18-trihydroxy-ent-kaur-16-ene) afforded 7alpha,18,19-trihydroxy-ent-kaur-16-ene and 7alpha,11beta,15alpha,18-tetrahydroxy-ent-kaur-16-ene, respectively. The presence of a 7alpha-hydroxyl group in epi-candol A avoids its biotransformation along the biosynthetic pathway of gibberellins, and directs it to the seco-ring B acids route. The 15alpha-hydroxyl group in canditriol inhibits oxidation at C-19 and direct hydroxylation at C-11(beta). The formation of fujenoic acid, from 7alpha-hydroxy-ent-kaur-16-ene, probably occurs via 7alpha-hydroxykaurenoic acid and 7-oxokaurenoic acid, with subsequent hydroxylation at the C-6(beta) position.  相似文献   

4.
Cytochromes P450cam and P450BM3 oxidize alpha- and beta-thujone into multiple products, including 7-hydroxy-alpha-(or beta-)thujone, 7,8-dehydro-alpha-(or beta-)thujone, 4-hydroxy-alpha-(or beta-)thujone, 2-hydroxy-alpha-(or beta-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring-opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 +/- 0.3 x 10(10) s(-1) to 12.5 +/- 3 x 10(10) s(-1) for the trapping of the carbon radical by the iron-bound hydroxyl radical equivalent. 7-[2H]-alpha-Thujone has been synthesized and used to amplify C-4 hydroxylation in situations where uninformative C-7 hydroxylation is the dominant reaction. The involvement of a carbon radical intermediate is confirmed by the observation of inversion of stereochemistry of the methyl-substituted C-4 carbon during the hydroxylation. With an L244A mutation that slightly increases the P450(cam) active-site volume, this inversion is observed in up to 40% of the C-4 hydroxylated products. The oxidation of alpha-thujone by human CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 occurs with up to 80% C-4 methyl inversion, in agreement with a dominant radical hydroxylation mechanism. Three minor desaturation products are produced, with at least one of them via a cationic pathway. The cation involved is proposed to form by electron abstraction from a radical intermediate. The absence of a solvent deuterium isotope effect on product distribution in the P450cam reaction precludes a significant role for the P450 ferric hydroperoxide intermediate in substrate hydroxylation. The results indicate that carbon hydroxylation is catalyzed exclusively by a P450 ferryl species via radical intermediates whose detailed properties are substrate- and enzyme-dependent.  相似文献   

5.
Flavanone (1) and 6-hydroxyflavanone (2) were subjected to transformation by means of Aspergillus niger strains (one wild and three UV mutants). For both substrates the biotransformation resulted in reduction of the carbonyl group (products 5 and 7) and dehydrogenation at C-2 and C-3 (3 and 8). Additionally, for flavanone (1) reduction of C-4 together with hydroxylation at C-7 (6) and dehydrogenation at C-2, C-3 along with hydroxylation at C-3 (4) were observed.  相似文献   

6.
A series of 7-ethynyl and 7-ethenyl-4-anilino-3-quinolinecarbonitriles were synthesized and tested for Src inhibition. Derivatives bearing a C-6 methoxy group and 2,4-dichloro-5-methoxyaniline at C-4 showed optimal inhibition of Src enzymatic and cellular activity. The ethenyl and ethynyl groups were incorporated at C-7 utilizing a Stille, Heck, or Sonogashira coupling reaction.  相似文献   

7.
Streptomyces sp. strain HK803 produces six analogues of phoslactomycin (Plm A through Plm F). With the exception of Plm B, these analogues contain a C-18 hydroxyl substituent esterified with a range of short-alkyl-chain carboxylic acids. Deletion of the plmS(2) open reading frame (ORF), showing high sequence similarity to bacterial cytochrome P450 monooxygenases (CYPs), from the Plm biosynthetic gene cluster has previously resulted in an NP1 mutant producing only Plm B (N. Palaniappan, B. S. Kim, Y. Sekiyama, H. Osada, and K. A. Reynolds, J. Biol. Chem. 278:35552-35557, 2003). Herein, we report that a complementation experiment with an NP1 derivative (NP2), using a recombinant conjugative plasmid carrying the plmS(2) ORF downstream of the ermE* constitutive promoter (pMSG1), restored production of Plm A and Plm C through Plm F. The 1.2-kbp plmS(2) ORF was also expressed efficiently as an N-terminal polyhistidine-tagged protein in Streptomyces coelicolor. The recombinant PlmS(2) converted Plm B to C-18-hydroxy Plm B (Plm G). PlmS(2) was highly specific for Plm B and unable to process a series of derivatives in which either the lactone ring was hydrolyzed or the C-9 phosphate ester was converted to C-9/C-11 phosphorinane. This biochemical analysis and complementation experiment are consistent with a proposed Plm biosynthetic pathway in which the penultimate step is hydroxylation of the cyclohexanecarboxylic acid-derived side chain of Plm B by PlmS(2) (the resulting Plm G is then esterified to provide Plm A and Plm C through Plm F). Kinetic parameters for Plm B hydroxylation by PlmS(2) (K(m) of 45.3 +/- 9.0 microM and k(cat) of 0.27 +/- 0.04 s(-1)) are consistent with this step being a rate-limiting step in the biosynthetic pathway. The penultimate pathway intermediate Plm G has less antifungal activity than Plm A through Plm F and is not observed in fermentations of either the wild-type strain or NP2/pMSG1.  相似文献   

8.
Fusarium graminearum Z-3639 and F. sporotrichioides NRRL3299 produce the trichothecene mycotoxins 15-acetyldeoxynivalenol and T-2 toxin, respectively. These toxins differ in oxygenation at C-4, C-7, and C-8. In F. sporotrichioides, Tri1 (FsTri1) controls C-8 hydroxylation. To determine the function of an apparent F. graminearum Tri1 (FgTri1) homolog, both FsTri1 and FgTri1 genes were heterologously expressed in the trichothecene-nonproducing species F. verticillioides by fusing the Tri1 coding regions to the promoter of the fumonisin biosynthetic gene FUM8. FsTri1 and FgTri1 have been partially characterized by disruption analysis, and the results from these analyses suggest that FsTri1 most likely has a single function but that FgTri1 may have two functions. Transgenic F. verticillioides carrying the FsTri1 (FvF8FsTri1) converted exogenous isotrichodermin and calonectrin to 8-hydroxyisotrichodermin and 8-hydroxycalonectrin, respectively. Transgenic F. verticillioides carrying FgTri1 (FvF8FgTri1) converted isotrichodermin to a mixture of 7-hydroxyisotrichodermin and 8-hydroxyisotrichodermin but converted calonectrin to a mixture of 7-hydroxycalonectrin, 8-hydroxycalonectrin, and 3,15-diacetyldeoxynivalenol. A fourth compound, 7,8-dihydroxycalonectrin, was identified in large-scale F. verticillioides FvF8FgTri1 cultures fed isotrichodermin. Our results indicate that FgTri1 controls both C-7 and C-8 hydroxylation but that FsTri1 controls only C-8 hydroxylation. Our studies also demonstrate that F. verticillioides can metabolize some trichothecenes by adding an acetyl group to C-3 or by removing acetyl groups from C-4 or C-15. In addition, wild-type F. verticillioides can convert 7,8-dihydroxycalonectrin to 3,15-diacetyldeoxynivalenol.  相似文献   

9.
Biotransformation of ent-3beta,12alpha-dihydroxy-13-epi-manoyl oxide with Fusarium moniliforme gave the regioselective oxidation of the hydroxyl group at C-3 and the ent-7beta-hydroxylation. The action of Gliocladium roseum in the 3,12-diketoderivative originated monohydroxylations at C-1 and C-7, both by the ent-beta face, while Rhizopus nigricans produced hydroxylation at C-7 or C-18, epoxidation of the double bond, reduction of the keto group at C-3, and combined actions as biohydroxylation at C-2/epoxidation of the double bond and hydroxylation at C-7/reduction of the keto group at C-3. In the ent-3-hydroxy-12-keto epimers, G. roseum originated monohydroxylations at C-1 and C-7 and R. nigricans originated the oxidation at C-3 as a major transformation, epoxidation of double bond and hydroxylation at C-2. Finally, in the ent-3beta-hydroxy epimer R. nigricans also originated minor hydroxylations at C-1, C-6, C-7 and C-20 and F. moniliforme produced an hydroxylation at C-7 and a dihydroxylation at C-7/C-11.  相似文献   

10.
Human cytochrome P450 1B1 (CYP1B1) catalyzes the hydroxylation of 17beta-estradiol (E(2)) at C-4, with a lesser activity at C-2. The E(2) 4-hydroxylase activity of human CYP1B1 was first observed in studies of MCF-7 breast cancer cells. Sequencing of polymerase chain reaction products revealed that CYP1B1 expressed in MCF-7 cells was not the previously characterized enzyme but a polymorphic form with leucine substituted for valine at position 432 and serine substituted for asparagine at position 453. To investigate the NADPH- and organic hydroperoxide-supported E(2) hydroxylase activities of the 432L, 453S form of human CYP1B1, the MCF-7 CYP1B1 cDNA was cloned and the enzyme was expressed in Sf9 insect cells. In microsomal assays supplemented with human NADPH:cytochrome P450 oxidoreductase, the expressed 432L, 453S form catalyzed NADPH-supported E(2) hydroxylation with a similar preference for 4-hydroxylation as the 432V, 453N form, with maximal rates of 1.97 and 0.37 nmol (min)(-1)(nmol cytochrome P450)(-1) for 4- and 2-hydroxylation, respectively. Cumeme hydroperoxide efficiently supported E(2) hydroxylation by both the 432V, 453N and 432L, 453S forms at several-fold higher rates than the NADPH-supported activities and with a lesser preference for E(2) 4- versus 2-hydroxylation (2:1). The hydroperoxide-supported activities of both forms were potently inhibited by the CYP1B1 inhibitor, 3,3',4, 4',5,5'-hexachlorobiphenyl. These results indicate that the 432V, 453N and 432L, 453S forms of CYP1B1 have similar catalytic properties for E(2) hydroxylation, and that human CYP1B1 is very efficient in catalyzing the hydroperoxide-dependent formation of catecholestrogens.  相似文献   

11.
Jiang XR  Sowell JW  Zhu BT 《Steroids》2006,71(5):334-342
Estrogen receptor (ER) pure antagonists such as ICI-182,780 (fulvestrant) are effective alternatives to tamoxifen (an ER antagonist/weak partial agonist) in the treatment of postmenopausal, receptor-positive human breast cancers. Structurally, these pure antagonists contain the basic core structure of 17beta-estradiol (E(2)) with a long side chain attached to its C-7alpha position. We explored and compared in this study various synthetic routes for preparing a number of C-7alpha-substituted derivatives of E(2), which are highly useful for the design and synthesis of high-affinity ER antagonists, ER-based imaging ligands, and other ER-based multi-functional agents. Using E(2) as the starting material and 1-iodo-6-benzyloxyhexane as a precursor for the C-7alpha side chain, a seven-step synthetic procedure afforded 3,17beta-bis(acetoxy)-7alpha-(6-hydroxyhexanyl)-estra-1,3,5(10)-triene (one of the derivatives prepared) in an overall yield of approximately 45% as compared to other known procedures that afforded substantially lower overall yield (8-27%). The synthetic steps for this representative compound include: (1) protection of the C-3 and C-17beta hydroxyls of E(2) using methoxymethyl groups; (2) hydroxylation of the C-6 position of the bismethoxymethyl ether of E(2); (3) Swern oxidation of the C-6 hydroxy to the ketone group; (4) C-7alpha alkylation of the C-6 ketone derivative of E(2); (5) deprotection of the two methoxymethyl groups; (6) reprotection of the C-3 and C-6 free hydroxyls with acetyl groups; (7) removal of the C-6 ketone and the benzyl group on the side chain by catalytic hydrogenation in acetic acid. As predicted, two of the representative C-7alpha-substituted derivatives of E(2) synthesized in the present study retained strong binding affinities (close to those of E(2) and ICI-182,780) for the human ERalpha and ERbeta subtypes as determined using the radioligand-receptor binding assays.  相似文献   

12.
The chemical synthesis of 3beta,7beta-dihydroxy-5-cholen-24-oic acid, triply conjugated by sulfuric acid at C-3, by N-acetylglucosamine (GlcNAc) at C-7, and by glycine or taurine at C-24, is described. These are unusual, major metabolites of bile acid found to be excreted in the urine of a patient with Niemann-Pick disease type C1. Analogous double-conjugates of 3beta-hydroxy-7-oxo-5-cholen-24-oic acid were also prepared. The principal reactions involved were: (1) beta-d-N-acetylglucosaminidation at C-7 of methyl 3beta-tert-butyldimethylsilyloxy (TBDMSi)-7beta-hydroxy-5-cholen-24-oate with 2-acetamido-1alpha-chloro-1,2-dideoxy-3,4,6-tri-O-acetyl-d-glucopyranose in the presence of CdCO(3) in boiling toluene; (2) sulfation at C-3 of the resulting 3beta-TBDMSi-7beta-GlcNAc with sulfur trioxide-trimethylamine complex in pyridine; and (3) direct amidation at C-24 of the 3beta-sulfooxy-7beta-GlcNAc conjugate with glycine methyl ester hydrochloride (or taurine) using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride as a coupling agent in DMF. The structures of the multi-conjugated bile acids were characterized by liquid chromatography-mass spectrometry with an electrospray ionization probe under the positive and negative ionization modes.  相似文献   

13.
As enzymatic hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol) may be a factor in controlling the 5 alpha-dihydrotestosterone (DHT) content in the prostate, we were interested in activity and distribution of these enzymes in epithelium and stroma of human benign prostatic hyperplasia (BPH). The enzyme activities were measured after mechanical separation of BPH tissue from 15 patients of various ages into stroma and epithelium, and optimization of the in vitro transformation of 3 beta-diol to hydroxylated products, which were analyzed by HPLC. The main results were: (1) 3 beta-diol was hydroxylated at C-7 alpha, C-7 beta, C-6 alpha, and C-6 beta. (2) The mean Michaelis constant Km (nM +/- SEM) for hydroxylation at C-7 alpha(beta) (168 +/- 21) was significantly lower than at C-6 alpha(beta) (601 +/- 43) without differences between stroma and epithelium. (3) Hydroxylation at alpha position dominated significantly over that at beta. (4) The mean maximal metabolic rate Vmax (pmol . mg protein-1 . h-1) of hydroxylation at C-6 alpha was about 7-fold lower in stroma (3.4 +/- 0.2) than in epithelium (23.8 +/- 4.1), concerning the other hydroxylations, Vmax was about 1.6-fold lower in stroma. (5) With increasing age of the patients there was a significant decrease of the 3 beta-diol hydroxylation in stroma and epithelium. It is discussed that the significantly lower activity of 3 beta-diol hydroxylation in stroma compared to epithelium and the decrease of activity with increasing age might potentiate the DHT accumulation in stroma of BPH.  相似文献   

14.
The effects of sulfonate analogs of cholic (C), chenodeoxycholic (CDC), and ursodeoxycholic acid (UDC) and three 7-alkylated CDCs--7-methyl-, 7-ethyl-, and 7-propyl-CDCs--on taurocholate absorption from rat terminal ileum in situ and on cholesterol 7alpha-hydroxylase activity in primary culture of the rat liver were investigated. The sulfonate analogs of two dihydroxy bile acids CDC and UDC, but not C, significantly decreased the absorption of taurocholate. Taurine conjugates of 7-alkylated CDC slightly decreased the taurocholate absorption, and tauro-7-propyl-CDC significantly suppressed the absorption. Although the sulfonate analogs of C and CDC reduced cholesterol 7alpha-hydroxylase activity by 40% and 60% compared to control, UDC-sulfonate analog did not affect enzymatic activity. These results were consistent with those of the lead compounds, C, CDC, and UDC. The introduction of methyl group at C-7 position of CDC attenuated the reduction in cholesterol 7alpha-hydroxylase activity by CDC. However, elongation of the alkyl group resulted in an inhibitory effect. The present study revealed the following: 1) bile acid sulfonates act on cholesterol and bile acid metabolism in a similar manner as taurine conjugated bile acids; and 2) the biologic properties of CDC could be altered by the introduction of alkyl group at C-7 position.  相似文献   

15.
The strain of Absidia coerulea was used to investigate the transformations of testosterone, androstenedione, progesterone and testosterone derivatives with additional C1–C2 double bond and/or 17-methyl group. All the examined substrates were transformed, mainly hydroxylated. It was found that the position and stereochemistry of the introduced hydroxyl group, as well as the yield of products, depended on the structure of the substrate. The first three substrates (hormones) underwent hydroxylation at C-14, and additional hydroxylation at 7 was observed in progesterone. The presence of the double bond (C1–C2) in 1-dehydrotestosterone did not influence the position of hydroxylation, but the product with additional C14–C15 double bond (at the same site as hydroxylation) was formed. 17-Methyltestosterone was hydroxylated at the 7 position, and also the dehydrogenated product (at the same site, with C6–C7 double bond) was obtained. The testosterone derivative with both C1–C2 double bond and 17-methyl group underwent hydroxylation at the 7 or 11β position, and a little amount of 14, 15 epoxide was formed.  相似文献   

16.
本研究通过体外生化实验研究细胞色素P450 3A7对维生素D3的羟化作用。根据GenBank报道的序列设计特异引物,扩增cyp3a7的编码区,将cyp3a7的编码区插入到pcDNATM3.1/myc-His(-) A的XhoⅠ/Bam HⅠ,通过测序检测序列的正确性。pcDNA-CYP3A7及pcDNA分别瞬时转染293T细胞,48 h后收集细胞,提取S9组分,用Bradford法测定蛋白质浓度。S9组分经12%SDS-PAGE凝胶电泳和Western blotting检测,用myc抗体作为一抗检测CYP3A7在293T细胞的表达水平。0.6 mg S9组分与1μmol/L维生素D3于37℃孵育30 min,用4倍体积的氯仿甲醇(体积比为3∶1)抽提,有机相在氮气流下吹干,残基用于HPLC分析。结果显示,重组表达CYP3A7的293T细胞的S9组分通过Western blotting检测到了特异的约60 kD的条带,对照样品未检测到特异条带的蛋白质。重组表达CYP3A7的293T细胞S9组分的孵育样品通过HPLC检测到了25-羟基维生素D3,对照样品未检测到25-羟基维生素D3。结果表明重组表达的CYP3A7羟化维生素D3生成25-羟基维生素D3。本研究为进一步探究还有哪些P450参与维生素D3在鸡体内的代谢,为阐明其代谢途径提供理论依据。  相似文献   

17.
alpha-Ecdysone (2beta,3beta,14alpha,22R,25-pentahydroxy-5beta-cholest-7-en-6-one) has been identified as the metabolism product of 3beta,14alpha-dihydroxy-5beta-cholest-7-en-6-one in isolated prothoracic glands of the tobacco hornworm, Manduca sexta. In contrast, 3beta-hydroxy-5beta-cholest-7-en-6-one is metabolized to 14-deoxy-alpha-ecdysone and a variety of intermediates all lacking the 14-hydroxy group. The results suggest that either the normal precursor for the synthesis of alpha-ecdysone by prothoracic glands is a sterol more highly oxygenated than cholesterol or that hydroxylation of a minimally oxygenated precursor at C-14 must precede introduction of the C-6 ketone and/or delta7 bond. The data further suggest that several alternative hydroxylation routes may exist for the latter steps of alpha-ecdysone biosynthesis.  相似文献   

18.
1. Liver microsomes were prepared from rats, rabbits, guinea pigs, hamsters, gerbils, a cat and three strains of mice, and were incubated with delta-11-tetrahydrocannabinol (delta-11-THC). The extracted metabolites were separated by chromatography on Sephadex LH-20 and examined by gas chromatography and combined gas chromatography/mass spectrometry. 2. Eleven metabolites were identified; these were formed by aliphatic hydroxylation of all positions of the pentyl chain, allylic hydroxylation at C-10 and C-8 (alpha and beta), and by the epoxide-diol pathway. 3. The ratio of the metabolites varied considerably between the species. Mice and rats favoured hydroxylation at C-8-alpha with very little hydroxylation of the pentyl chain. 4. In the guinea pig, however, hydroxylation of the pentyl chain, particularly at C-4', produced the major metabolites; very little hydroxylation occurred at C-8. 5. Side-chain hydroxylation was also favoured by the gerbil. 6. In the cat and hamster, 8-beta-hydroxylation was by far the major metabolic route, accounting, in the cat, for nearly 70% of the recovered metabolites. 7. The rabbit, on the other hand, favoured the epoxide-diol pathway with over 70% of the recovered metabolites being accounted for by the 9,11-dihydro-diols. 8. The results emphasise the need to make appropriate choices of animal models for metabolic and toxicological studies in humans.  相似文献   

19.
A novel series of 7beta-[2-(2-amino-5-chloro-thiazol-4-yl)-2(Z)-((S)-1-carboxyethoxyimino)acetamido]cephalosporins bearing various pyridinium groups at the C-3' position were synthesized and their in vitro antibacterial activities against gram-negative pathogens including Pseudomonas aeruginosa and several gram-positive pathogens were evaluated. Among the cephalosporins prepared, we found that a cephalosporin bearing the 2-amino-1-(3-methylamino-propyl)-1H-imidazo[4,5-b]pyridinium group at the C-3' position (8a) showed potent and well-balanced antibacterial activities against P. aeruginosa and other gram-negative pathogens including the strains which produce class C beta-lactamase and extended spectrum beta-lactamase (ESBL). Compound 8a also showed efficacious in vivo activity and high stability against AmpC beta-lactamase. These findings indicate that 2-aminoimidazopyridinium having an aminoalkyl group at the 1-position as a C-3' side chain is suitable for cephalosporins bearing an aminochlorothiazolyl moiety and a carboxyethoxyimino moiety on the C-7 side chain.  相似文献   

20.
7-methylguanosine (m7G) modification of tRNA occurs widely in eukaryotes and bacteria, is nearly always found at position 46, and is one of the few modifications that confers a positive charge to the base. Screening of a Saccharomyces cerevisiae genomic library of purified GST-ORF fusion proteins reveals two previously uncharacterized proteins that copurify with m7G methyltransferase activity on pre-tRNA(Phe). ORF YDL201w encodes Trm8, a protein that is highly conserved in prokaryotes and eukaryotes and that contains an S-adenosylmethionine binding domain. ORF YDR165w encodes Trm82, a less highly conserved protein containing putative WD40 repeats, which are often implicated in macromolecular interactions. Neither protein has significant sequence similarity to yeast Abd1, which catalyzes m7G modification of the 5' cap of mRNA, other than the methyltransferase motif shared by Trm8 and Abd1. Several lines of evidence indicate that both Trm8 and Trm82 proteins are required for tRNA m7G-methyltransferase activity: Extracts derived from strains lacking either gene have undetectable m7G methyltransferase activity, RNA from strains lacking either gene have much reduced m7G, and coexpression of both proteins is required to overproduce activity. Aniline cleavage mapping shows that Trm8/Trm82 proteins modify pre-tRNAPhe at G46, the site that is modified in vivo. Trm8 and Trm82 proteins form a complex, as affinity purification of Trm8 protein causes copurification of Trm82 protein in approximate equimolar yield. This functional two-protein family appears to be retained in eukaryotes, as expression of both corresponding human proteins, METTL1 and WDR4, is required for m7G-methyltransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号