首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functionally distinct conformations of HbA (human adult hemoglobin) were probed using deoxy and diliganded derivatives of symmetric Fe-Zn hybrids of HbA. To expand the range of accessible structures, different environments were utilized including solution, sol-gel encapsulation, and crystals. Further structural and functional modulation was achieved by the addition of allosteric effectors. Functional characterization included oxygen affinity measurements, CO combination rates, and geminate and bimolecular CO recombination, after photodissociation. The conformational properties were studied using visible resonance Raman spectroscopy as a probe of local tertiary structure at the iron-containing hemes and UV resonance Raman spectroscopy as a probe of elements of the globin known to be sensitive to quaternary structure. The combined results show a pattern in which there is a progression of conformational and functional properties that are consistent with a picture in which the T quaternary structure can accommodate a range of tertiary conformations (plasticity). At one end of the distribution is the equilibrium deoxy T state conformation that has the lowest ligand reactivity. At the other end of the distribution are T state conformations with higher ligand reactivity that exhibit "loosened" T state constraints within the globin including the alpha(1)beta(2) interface and reduced proximal strain at the heme.  相似文献   

2.
Cao Y  Shen D  Lu Y  Huang Y 《Annals of botany》2006,97(6):1091-1094
BACKGROUND AND AIMS: Raman spectroscopy can be used to examine the orientation of biomacromolecules using relatively thick samples of material, whereas more traditional means of analysing molecular structure require prior isolation of the components, which often destroys morphological features. In this study, Raman spectroscopy was used to examine the outer epidermal cell walls of wheat stems. METHODS: Polarized Raman spectra from the epidermal cell walls of wheat stem were obtained using near-infrared-Fourier transform Raman scattering. By comparing spectra taken with Raman light polarized perpendicular or parallel to the longitudinal axis of the cell, the orientation of macromolecules in the cell wall was investigated. KEY RESULTS: The net orientation of macromolecules varies in the epidermal cell walls of the different components of wheat stem. The net orientation of cellulose is parallel to the longitudinal axis of the cells, whereas the xylan and the phenylpropane units of lignin tend to lie perpendicular to the longitudinal axis of the cells, i.e. perpendicular to the net orientation of cellulose in the epidermal cell walls. CONCLUSIONS: The results imply that cellulose, lignin and xylan form a relatively ordered network that defines the mechanical and structural properties of the cell wall. Such results are likely to have a significant impact on the formulation of definitive models for the static and growing cell wall.  相似文献   

3.
We report the implementation of the transnasal image-guided high wavenumber (HW) Raman spectroscopy to differentiate tumor from normal laryngeal tissue at endoscopy. A rapid-acquisition Raman spectroscopy system coupled with a miniaturized fiber-optic Raman probe was utilized to realize real-time HW Raman (2800-3020 cm(-1)) measurements in the larynx. A total of 94 HW Raman spectra (22 normal sites, 72 tumor sites) were acquired from 39 patients who underwent laryngoscopic screening. Significant differences in Raman intensities of prominent Raman bands at 2845, 2880 and 2920 cm(-1) (CH(2) stretching of lipids), and 2940 cm(-1) (CH(3) stretching of proteins) were observed between normal and cancer laryngeal tissue. The diagnostic algorithms based on principal components analysis (PCA) and linear discriminant analysis (LDA) together with the leave-one subject-out, cross-validation method on HW Raman spectra yielded a diagnostic sensitivity of 90.3% (65/72) and specificity of 90.9% (20/22) for laryngeal cancer identification. This study demonstrates that HW Raman spectroscopy has the potential for the noninvasive, real-time diagnosis and detection of laryngeal cancer at the molecular level.  相似文献   

4.
Resonance Raman and electronic absorption spectra were used to show that the state of an amphiphilic cation, relative to dilute aqueous solution, changes when it is accumulated by cells of Streptococcus faecalis when they are energized. The general characteristics of the cation employed, quinaldine red, closely paralleled those of other amphiphilic cations which have been used to measure membrane potential. A major aspect of the change is that in sodium-loaded cells, essentially all of the quinaldine red accumulated as the result of energization forms a strong bond with an anionic group. This binding is similar to that which occurs for the basal level of quinaldine red taken up in nonenergized cells. Ionic binding was detected using resonance Raman spectroscopy through shifts associated with a N+ parallel C--C parallel C stretching vibration to lower frequency on uptake. Another aspect of the change in state is that the cell-localized probe cation can aggregate while ionically bonded in a card pack fashion, the transition dipoles being parallel. A combination of resonance Raman and electronic absorption spectroscopy was used to characterize this aggregation. The aggregates were estimated to contain at least five quinaldine red cations at or near van der Waals contact, and the presence of other molecules, such as phospholipids, could not be excluded. Aggregation effects are complex depending on the ratio of cells to probe cation, and on energization. The site of binding is suggested to be the lipid bilayer region of the plasma membrane on the basis of experiments with liposomes and other model systems. In addition, some quinaldine red may be present in the cytoplasm in an aggregated, ionically bound form. The change in state on uptake following energization seems to be associated with a membrane potential, similar spectral and uptake effects being produced by an artificially generated membrane potential in cells and liposomes. The results show that membrane potential cannot be computed in a simple manner from the distribution of quinaldine red between cells and medium, assuming that the thermodynamic activity coefficient of cell-localized material is identical with that in dilute aqueous solution. However, uptake as well as subsequent ionic binding of quinaldine red seems to be related to potential in an as yet undefined manner.  相似文献   

5.
Raman spectroscopy was used to monitor changes in the oxygenation state of human red blood cells while they were placed under mechanical stress with the use of optical tweezers. The applied force is intended to simulate the stretching and compression that cells experience as they pass through vessels and smaller capillaries. In this work, spectroscopic evidence of a transition between the oxygenation and deoxygenation states, which is induced by stretching the cell with optical tweezers, is presented. The transition is due to enhanced hemoglobin-membrane and hemoglobin neighbor-neighbor interactions, and the latter was further studied by modeling the electrostatic binding of two of the protein structures.  相似文献   

6.
Raman spectroscopy is used to probe the nature of the hydrogen bonds which hold the water of hydration to DNA. The ~ 3450?cm?1 molecular O–H stretching mode shows that the first six water molecules per base pair of the primary hydration shell are very strongly bound to the DNA. The observed shift in the peak position of this mode permits a determination of the length of the hydrogen bonds for these water molecules. These hydrogen bonds appear to be about 0.3?Å shorter than the hydrogen bonds in bulk water. The linewidth of this mode shows no significant changes above water contents of about 15 water molecules per base pair. This technique of using a vibrational spectroscopy to obtain structural information about the hydration shells of DNA could be used to study the hydration shells of other biomolecules.  相似文献   

7.
A large amount of research within organic biosensors is dominated by organic electrochemical transistors (OECTs) that use conducting polymers such as poly(3,4-ethylene dioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS). Despite the recent advances in OECT-based biosensors, the sensing is solely reliant on the amperometric detection of the bioanalytes. This is typically accompanied by large undesirable parasitic electrical signals from the electroactive components in the electrolyte. Herein, we present the use of in situ resonance Raman spectroscopy to probe subtle molecular structural changes of PEDOT:PSS associated with its doping level. We demonstrate how such doping level changes of PEDOT:PSS can be used, for the first time, on operational OECTs for sensitive and selective metabolite sensing while simultaneously performing amperometric detection of the analyte. We test the sensitivity by molecularly sensing a lowest glucose concentration of 0.02 mM in phosphate-buffered saline solution. By changing the electrolyte to cell culture media, the selectivity of in situ resonance Raman spectroscopy is emphasized as it remains unaffected by other electroactive components in the electrolyte. The application of this molecular structural probe highlights the importance of developing biosensing probes that benefit from high sensitivity of the material's structural and electrical properties while being complimentary with the electronic methods of detection.  相似文献   

8.
Resonance Raman spectroscopy has been used to investigate the function and properties of the iron-sulfur cluster in Escherichia coli endonuclease III. Resonance Raman spectra in the Fe-S stretching region are indicative of a [4Fe-4S]2+ cluster with complete cysteinyl sulfur coordination, and vibrational assignments are made by analogy with bacterial ferredoxins. Minor changes in the vibrational frequencies of the modes primarily involving Fe-S(Cys) stretching accompany the binding of the inhibitor thymine glycol or an oligonucleotide containing a reduced apyrimidinic site. These changes are consistent with perturbation of the orientation of the ligating cysteinyl residues and rule out the possibility that the [4Fe-4S] cluster is directly involved with substrate or inhibitor binding. It is concluded that a structural role is most likely for the [4Fe-4S] cluster in endonuclease III.  相似文献   

9.
2,2,5,5-Tetramethyl-3-pyrrolin-1-yloxy-3-carboxamide (tempyo) labeled bovine serum albumin and cytochrome c at different pH values were prepared and investigated using Raman-resonance Raman (RR) spectroscopy and surface enhanced Raman scattering (SERS) spectroscopy. The Raman spectra of tempyo labeled proteins in the pH 6.7-11 range were compared to those of the corresponding free species. The SERS spectra were interpreted in terms of the structural changes of the tempyo labeled proteins adsorbed on the silver colloidal surface. The tempyo spin label was found to be inactive in the Raman-RR and SERS spectra of the proteins. The alpha-helix conformation was concluded to be more favorable as the SERS binding site of bovine serum albumin. In the cytochrome c the enhancement of the bands assigned to the porphyrin macrocycle stretching mode allowed the supposition of the N-adsorption onto the colloidal surface.  相似文献   

10.
Kabir M  Sudhamsu J  Crane BR  Yeh SR  Rousseau DL 《Biochemistry》2008,47(47):12389-12397
Nitric oxide synthase (NOS) generates NO via a sequential two-step reaction [l-arginine (l-Arg) --> N-hydroxy-l-arginine (NOHA) --> l-citrulline + NO]. Each step of the reaction follows a distinct mechanism defined by the chemical environment introduced by each substrate bound to the heme active site. The dioxygen complex of the NOS enzyme from a thermophilic bacterium, Geobacillus stearothermophilus (gsNOS), is unusually stable; hence, it provides a unique model for the studies of the mechanistic differences between the two steps of the NOS reaction. By using CO as a structural probe, we found that gsNOS exhibits two conformations in the absence of substrate, as indicated by the presence of two sets of nu(Fe-CO)/nu(C-O) modes in the resonance Raman spectra. In the nu(Fe-CO) versus nu(C-O) inverse correlation plot, one set of data falls on the correlation line characterized by mammalian NOSs (mNOS), whereas the other set of data lies on a new correlation line defined by a bacterial NOS from Bacillus subtilis (bsNOS), reflecting a difference in the proximal Fe-Cys bond strength in the two conformers of gsNOS. The addition of l-Arg stabilizes the conformer associated with the mNOS correlation line, whereas NOHA stabilizes the conformer associated with the bsNOS correlation line, although both substrates introduce a positive electrostatic potential into the distal heme pocket. To assess how substrate binding affects Fe-Cys bond strength, the frequency of the Fe-Cys stretching mode of gsNOS was monitored by resonance Raman spectroscopy with 363.8 nm excitation. In the substrate-free form, the Fe-Cys stretching mode was detected at 342.5 cm(-1), similar to that of bsNOS. The binding of l-Arg and NOHA brings about a small decrease and increase in the Fe-Cys stretching frequency, respectively. The implication of these unique structural features with respect to the oxygen chemistry of NOS is discussed.  相似文献   

11.
12.
Choi J  Choo J  Chung H  Gweon DG  Park J  Kim HJ  Park S  Oh CH 《Biopolymers》2005,77(5):264-272
Raman spectroscopy has strong potential for providing noninvasive dermatological diagnosis of skin cancer. In this study, confocal Raman microscopy was applied to the dermatological diagnosis for one of the most common skin cancers, basal cell carcinoma (BCC). BCC tissues were obtained from 10 BCC patients using a routine biopsy and used for confocal Raman measurements. Autofluorescence signals from tissues, which interfere with the Raman signals, were greatly reduced using a confocal slit adjustment. Distinct Raman band differences between normal and BCC tissues for the amide I mode and the PO2- symmetric stretching mode showed that this technique has strong potential for use as a dermatological diagnostic tool without the need for statistical treatment of spectral data. It was also possible to precisely differentiate BCC tissue from surrounding noncancerous tissue using the confocal Raman depth profiling technique. We propose that confocal Raman microscopy provides a novel method for dermatological diagnosis since direct observations of spectral differences between normal and BCC tissues are possible.  相似文献   

13.
Plasmonics - Tip-enhanced Raman scattering (TERS), as a combination of scanning probe microscopy (SPM) and surface-enhanced Raman spectroscopy (SERS) makes a huge progress in high sensitive optical...  相似文献   

14.
Tip-enhanced Raman scattering (TERS) enables the label-free investigation of biochemical interfaces with nanometer lateral resolution by combining the benefits of the intrinsic molecular specificity of Raman spectroscopy, the sensitivity because of signal enhancing capabilities of plasmonic nanoparticles, and the precision of scanning probe microscopy. The structural differentiation of constituents based on inherent molecular information is possible even down to a few nanometer spatial resolution and consequently, nucleobases, proteins, lipids, and carbohydrates can be identified and localized in a single measurement. This has been shown in the last few years for different biological samples ranging from single DNA strand investigations to cell membrane studies.  相似文献   

15.
The noninvasive quality estimation of adherent mammalian cells for transplantation is reviewed. The quality and heterogeneity of cells should be estimated before transplantation because cultured cells are not homogeneous but heterogeneous. The estimation of cell quality should be performed noninvasively because most protocols of regenerative medicine are autologous cell system. The differentiation level and contamination of other cell lineage could be estimated by two-dimensional cell morphology analysis and tracking using a conventional phase contrast microscope. The noninvasive determination of the laser phase shift of a cell using a phase-shifting laser microscope, which might be more noninvasive, and more useful than the atomic force microscope and digital holographic microscope, was carried out to determine the three-dimensional cell morphology, and the estimation of the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. Chemical analysis of the culture supernatant by conventional analytical methods such as ELISA was also useful to estimate the differentiation level of a cell population. Chemical analysis of cell membrane and intracellular components using a probe beam, an infrared beam, and Raman spectroscopy was useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell.  相似文献   

16.
The rattail fish, Coryphaenoides armatus, lives at ocean depths of 3000 m. As an adaptation for pumping oxygen into the swim bladder against the extreme pressures at the ocean bottom, the hemoglobin from this fish at low pH exhibits an extraordinarily low affinity for ligands. In this study, continuous wave and time-resolved Raman techniques are used to probe the binding site in this hemoglobin. The findings show an association between the low-affinity material and a highly strained heme-proximal histidine linkage. The transient Raman studies reveal differences in the protein structural dynamics at pH 6 and 8. The emerging picture derived from both this and earlier studies is that in vertebrate hemoglobins the heme-proximal histidine linkage represents a key channel through which species- and solution-dependent variations in the globin are communicated both statically and dynamically to the heme to produce an extensive range of ligand binding properties. Also presented is a new model that relates both intensity and frequency of the resonance Raman band involving the iron-proximal histidine stretching mode to specific protein controlled structural degrees of freedom. There emerges from this model a mechanism whereby modifications in the proximal heme pocket can further reduce the affinity of an already highly strained T state structure of hemoglobin.  相似文献   

17.
Large stretching and un-stretching force response of adherent fibroblasts is measured by micromachined mechanical force sensors. The force sensors are composed of a probe and flexible beams. The probe, functionalized by fibronectin, is used to contact the cells. The flexible beams are the sensing element. The sensors are made of single crystal silicon and fabricated by the SCREAM process. The maximum cell stretch reached is approximately 50 microm, which is about twice of the cell initial size, and the time delay between two consecutive stretching/un-stretching steps is 75 s unless otherwise stated. We find that the force response of the cells is strongly linear, reversible, and repeatable, with a small stiffening at the initial deformation stage. Force response of single cells measured before and after cytochalasin D treatment suggests that actin filaments take almost all the cell internal forces due to stretch. These findings may shed light on the increasing understanding on the mechanical behavior of cells and provide clues for making new classes of biological materials having uncommon properties.  相似文献   

18.
In this work Raman spectroscopy was used to investigate uncoated magnetic fluids (UMF's) and coated magnetic fluids (CMF's). The coating agents were N-oleoylsarcosine, dodecanoic acid, and ethoxylated polyalcohol. The Raman probe is the hydroxyl (OH) group chemisorbed at the magnetic nanoparticle surface and the measurements were performed in the typical OH bending and OH stretching regions. The room temperature Raman data obtained from the UMF's and CMF's are compared to each other and with the data obtained from liquid water. Suppression of Raman modes from the MF's are discussed in terms of symmetry reduction and in terms of the interaction between the chemisorbed OH-group and the surrounding medium. The relative grafting coefficient associated to different coatings are estimated from the Raman data. The highest grafting coefficient is achieved with a single coating of dodecanoic acid in the hydrocarbon-based MF. The surface-grafting coefficient of the N-oleoylsarcosine-coated MF reduces when the polar liquid carrier replaces the non-polar liquid carrier. In comparison to liquid water, it was found that the hydrogen bonding between the chemisorbed OH-group and the solvent was enhanced in UMF's and reduced in CMF's.  相似文献   

19.
We studied the cytotoxic effects of alpha-, beta-, gamma-, and delta-hexachlorocyclohexanes (HCCH) on the survival of Chinese hamster V79 cells using clonogenic assays. Lethal dose yielding 50% cell survival (LD50) suggests the following order of cytotoxicity: delta-(+)gamma-HCCH (LD50 4 micrograms/ml) (1:1, w/w, mixture) > delta-HCCH (LD50 6 micrograms/ml) > gamma-HCCH (LD50 13 micrograms/ml) > alpha-HCCH (LD50 approx. 35 micrograms/ml) > beta-HCCH. Structural changes in plasma membranes prepared from HCCH-treated V79 cells at dose yielding 10% cell survival (LD10) were analyzed using Raman spectroscopy. Raman spectra of plasma membranes show bands at 2850, 2880-2890, and 2935 cm-1 in the C-H stretching region. The plot of the ratio (I2880-2890/I2850) vs temperature for control plasma membranes shows two transitions between -5 and 5 degrees C and between 12 and 20 degrees C. Plasma membranes prepared from gamma- and delta-HCCH-treated Chinese hamster V79 cells show single transitions between -4 and 11 degrees C and between -2 and 11 degrees C, respectively. These changes in the thermal transition properties suggest that both gamma- and delta-HCCH alter lipid and lipid-protein phases of the plasma membrane of V79 cells. Raman analysis of the amide I and amide III region spectra further suggest that delta-HCCH also alters the secondary structure and the environment of highly amidated segments of plasma membrane proteins. We suggest that the primary action of biologically active HCCH isomers is to disrupt the organization of the plasma membrane and that may affect cell viability.  相似文献   

20.
Glucose acts as a β‐cell stimulus factor and leads to cellular responses that involve a large amount of biomolecule formation, relocation, and transformation. We hypothesize that information about these changes can be obtained in real‐time by laser tweezers Raman spectroscopy. To test this hypothesis, repeated measurements designs in accordance with the application of Raman spectroscopy detection were used in the current experiment. Single rat β‐cells were measured by Raman spectroscopy in 2.8 mmol/l glucose culture medium as a basal condition. After stimulation with high glucose (20 mmol/l), the same cells were measured continuously. Each cell was monitored over a total time span of 25 min, in 5 min intervals. During this period of time, cells were maintained at an appropriate temperature controlled by an automatic heater, to provide near‐physiological conditions. It was found that some significant spectral changes induced by glucose were taking place during the stimulation time course. The most noticeable changes were the increase of spectral intensity at the 1002, 1085, 1445, and 1655 cm?1 peaks, mainly corresponding to protein and lipid. We speculate that these changes might have to do with β‐cell protein and lipid synthesis. Using laser tweezers Raman spectroscopy in combination with glucose stimulation, optical spectral information from rat β‐cells was received and analyzed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 587–594, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号