首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three main techniques allow the detection of changes in the cellular genomic content. The karyotyping procedure on metaphase spreads can give specific information on chromosome number and structural chromosome changes, but analyses are restricted to a limited number of chromosome spreads. Furthermore, cell culturing of (in particular solid) cancer specimens can result in selection of a minor tumour cell population with a high proliferative capacity. On the other hand, flow cytometry allows the analyses of large numbers of cells, but does not detect small variations in the DNA content or structural changes. The fluorescent in situ hybridization (FISH) procedure combines the advantages of the two former procedures, in that relatively large numbers of cells can be analysed easily and specific chromosomal changes can be detected.  相似文献   

2.
An unbalanced chromosome number (aneuploidy) is present in most malignant tumours and has been attributed to mitotic mis-segregation of chromosomes. However, recent studies have shown a relatively high rate of chromosomal mis-segregation also in non-neoplastic human cells, while the frequency of aneuploid cells remains low throughout life in most normal tissues. This implies that newly formed aneuploid cells are subject to negative selection in healthy tissues and that attenuation of this selection could contribute to aneuploidy in cancer. To test this, we modelled cellular growth as discrete time branching processes, during which chromosome gains and losses were generated and their host cells subjected to selection pressures of various magnitudes. We then assessed experimentally the frequency of chromosomal mis-segregation as well as the prevalence of aneuploid cells in human non-neoplastic cells and in cancer cells. Integrating these data into our models allowed estimation of the fitness reduction resulting from a single chromosome copy number change to an average of ≈30% in normal cells. In comparison, cancer cells showed an average fitness reduction of only 6% (p = 0.0008), indicative of aneuploidy tolerance. Simulations based on the combined presence of chromosomal mis-segregation and aneuploidy tolerance reproduced distributions of chromosome aberrations in >400 cancer cases with higher fidelity than models based on chromosomal mis-segregation alone. Reverse engineering of aneuploid cancer cell development in silico predicted that aneuploidy intolerance is a stronger limiting factor for clonal expansion of aneuploid cells than chromosomal mis-segregation rate. In conclusion, our findings indicate that not only an elevated chromosomal mis-segregation rate, but also a generalised tolerance to novel chromosomal imbalances contribute to the genomic landscape of human tumours.  相似文献   

3.
Escherichia coli harboring a recombinant plasmid was grown in a fermenter to study the effects of selected process parameters on the growth of the microbe and on plasmid amplification with chloramphenicol treatment. Eighteen fermentations were carried out according to a statistical experimental design in which the fermentation temperature, pH, and turbidity of culture at the onset of plasmid amplification were the selected independent process variables. Static regression models describing the process were derived from the experimental results. It turned out that recombinant plasmid copy numbers could be influenced by controlling fermentation temperature and pH. The maximal copy number during bacterial growth phase and the optimal plasmid production were found to require fermentation conditions different from those needed for optimal bacterial growth and cell division. The conditions also differed significantly from those routinely used in research laboratories for plasmid preparation. The chloramphenicol treatment increased the plasmid copy number compared with chromosome numbers up to fivefold. Some of the data suggest that under certain conditions the number of chromosome molecules in E. coli cells may rise during the plasmid amplification stage. Statistical experimental design, a nucleic acid sandwich hybridization technique for plasmid quantification, and regression models proved to be useful in this study.  相似文献   

4.
When coupled with multiple displacement amplification (MDA), microarray-based comparative genomic intensity allows detection of chromosome copy number aberrations even in single or few cells, but the actual performance of the system and their influencing factors have not been well defined. Here, using single-nucleotide polymorphism (SNP) array, we analyzed copy number profiles from DNA amplified by MDA in 1-10 cells and estimated the accuracy and spatial resolution of the analysis. Based on the concordance of SNP copy numbers for DNA with and without MDA, the accuracy of the system can be significantly enhanced by using MDA-amplified DNA as reference and also by increasing the cell numbers. Analyses under different smoothing treatments revealed a practical resolution of 2?Mb for 10 cells and 10?Mb for a single cell. When both cells with known chromosomal duplication and deletion were analyzed, this platform detected a copy number "loss" more accurately than a "gain" (P < 0.01), particularly in single-cell MDA products. Together, we demonstrated that SNP array coupled with MDA is reliable and efficient for detection of copy number aberrations in a small number of cells, and its accuracy and resolution can both be significantly enhanced with increasing the number of cells as MDA template.  相似文献   

5.
Cell Cycle Regulation in Marine Synechococcus sp. Strains   总被引:3,自引:1,他引:2       下载免费PDF全文
The cell cycle behavior of four marine strains of the unicellular cyanobacterium Synechococcus sp. was analyzed by examining the DNA frequency distributions of exponentially growing and dark-blocked populations and by considering the patterns of change in these distributions during growth under a diel light-dark cycle. The two modes of cell cycle regulation previously identified in a freshwater and coastal marine Synechococcus isolate, respectively, were represented among the three open-ocean strains we examined. The first of these modes of regulation is consistent with the slow-growth case of the widely accepted prokaryotic cell cycle paradigm. The second appears to involve asynchronous initiation of chromosome replication, the presence of multiple chromosome copies at low growth rates, and variability in chromosome copy number among cells in the population. These characteristics suggest the involvement of a large probabilistic component in cell cycle regulation which could make the application of cell cycle-based estimators of in situ growth rate to Synechococcus populations problematic.  相似文献   

6.
The relationship between cell mass and cell number dynamics for bacteria such as Escherichia coli depends on the cell cycle parameters C and D. Effects of plasmid copy number on these cell cycle parameters have been studied for Escherichia coli HB101 containing pMB1 plasmids propagated at different copy numbers ranging from 12 to 122. Determination of cell cycle and cell size parameters was accomplished using flow cytometry data on single-cell light scattering and DNA content frequency functions in conjunction with a mathematical model of cell population statistics. Two independent methods for estimating C and D intervals based on flow cytometry were developed and applied with essentially identical results. The presence of plasmids decreases the C and D periods, mean cell sizes, and initiation masses for chromosome replication by 14, 24, 38, and 18%, respectively, relative to corresponding values for plasmid-free host cells. Plasmid copy number has a negligible influence on these parameters, suggesting that host-plasmid inter actions which determine these properties are centered on the single plasmid selected for replication according to the random selection model established for ColE1-type plasmids.  相似文献   

7.
A novel method was devised to measure the number of plasmids in individual Escherichia coli cells. With this method, involving measurement of plasmid-driven expression of the green fluorescent protein gene by flow cytometry, the copy number distribution of a number of different plasmids was measured. Whereas natural plasmids had fairly narrow distributions, minichromosomes, which are plasmids replicating only from a cloned oriC copy, have a wide distribution, suggesting that there is no copy number control for minichromosomes. When the selection pressure (kanamycin concentration) for minichromosomes was increased, the copy number of minichromosomes was also increased. At up to 30 minichromosomes per host chromosome, replication and growth of the host cell was unaffected. This is evidence that there is no negative element for initiation control in oriC and that there is no incompatibility between oriC located on the chromosome and minichromosome. However, higher copy numbers led to integration of the minichromosomes at the chromosomal oriC and to initiation asynchrony of the host chromosome. At a minichromosome copy number of approximately 30, the cell's capacity for synchronous initiation is exceeded and free minichromosomes will compete out the chromosome to yield inviable cells, unless the minichromosomes are incorporated into the chromosome.  相似文献   

8.
Minichromosomes, i.e. plasmids that can replicate from an integrated oriC, have been puzzling because of their high copy numbers compared to that of the chromosomal oriC, their lack of incompatibility with the chromosome and their high loss frequencies. Using single cell resistance to tetracycline or ampicillin as an indicator of copy number we followed the development of minichromosome distributions in Escherichia coli cells transformed with minichromosomes and then allowed to grow towards the steady state. The final copy number distribution was not reached within 15 to 20 generations. If the minichromosome carried the sop (partitioning) genes from plasmid F, the development of the copy number distribution was further drastically delayed. We conclude that E. coli cells have no function that directly controls minichromosomal copy numbers, hence the absence of incompatibility in the sense of shared copy number control. We suggest that minichromosomes are subject to the same replication control as the chromosome but segregate randomly in the absence of integrated partitioning genes. This, combined with evidence that the lowest copy number classes are normally present despite high average copy numbers, can account for the high loss frequencies.  相似文献   

9.
We have shown previously that perturbation of origin firing in chromosome replication causes DNA lesions and triggers DNA damage checkpoint control, which ensures genomic integrity by stopping cell cycle progression until the lesions are repaired or by inducing cell death if they are not properly repaired. This was based on the observation that the temperature-sensitive phenotype of orc1-4 and orc2-1 mutants required a programmed action of the RAD9-dependent DNA damage checkpoint. Here, we report that DNA lesions in the orc mutants are induced much more quickly and frequently within the rRNA gene (rDNA) locus than at other chromosomal loci upon temperature shift. orc mutant cells with greatly reduced rDNA copy numbers regained the ability to grow at restrictive temperatures, and the checkpoint response after the temperature shift became weak in these cells. In orc2-1 cells, completion of chromosomal duplication was delayed specifically on chromosome XII, where the rDNA array is located, and the delay was partially suppressed when the rDNA copy number was reduced. These results suggest that the rDNA locus primarily signals abnormalities in the initiation program to the DNA damage checkpoint and that the rDNA copy number modulates the sensitivity of this monitoring function.  相似文献   

10.
Chromosomal distribution of transposable elements (TEs) Osvaldo and blanco in D. buzzatii was studied in three original natural populations from Argentina (Berna, Puerto Tirol and La Nostalgia) and a colonizer population from the Iberian Peninsula (Carboneras). The Spanish population showed significant differences for Osvaldo and blanco copy numbers when we compared the X chromosome and the autosomes; but it is mainly the accumulation of copies in chromosome 2, where most sites with high insertion frequency were located, that causes the discrepancy with the negative selection model. We found no significant differences in TE frequency between chromosomal regions with different exchange rates, and no evident accumulation of TE was detected within chromosomal inversions where recombination rate is reduced. The Carboneras population shows euchromatic sites of Osvaldo and blanco with high occupancy and others with low copy number. On the contrary, Argentinian populations show only a generalized low occupancy per insertion site. Moreover, the mean copy number of both elements is higher in Spain than in Argentina. All these results suggest an important role of the colonization process in the distribution of TEs. The increase in the copy number of the TEs analysed and their elevated frequency in some chromosomal sites in Carboneras is, most probably, a sequel of the founder event and drift that took place at the time of the colonization of the Old World by D. buzzatii from the New World some 300 years ago.  相似文献   

11.
12.
Illenye S  Heintz NH 《Genomics》2004,83(1):66-75
Bacterial artificial chromosomes (BACs) provide a well-characterized resource for studying the functional organization of genes and other large chromosomal domains. To facilitate functional studies in cell cultures, we have developed a simple approach for generating stable cell lines with variable copy numbers of any BAC. Here we describe hamster cell lines with BAC transgenes that express mouse Cdc6 at levels that correlate with BAC copy number; show that mouse Cdc6 is regulated normally during the cell cycle, binds chromatin, and is degraded during apoptosis; and report a novel fraction of Cdc6 that associates with the spindle apparatus during mitosis. With RNA interference to assess genetic complementation by BAC alleles, this system will facilitate functional studies on large chromosomal domains at variable copy number in mammalian cell models.  相似文献   

13.
Escherichia coli minichromosomes are plasmids replicating exclusively from a cloned copy of oriC, the chromosomal origin of replication. They are therefore subject to the same types of replication control as imposed on the chromosome. Unlike natural plasmid replicons, minichromosomes do not adjust their replication rate to the cellular copy number and they do not contain information for active partitioning at cell division. Analysis of mutant strains where minichromosomes cannot be established suggest that their mere existence is dependent on the factors that ensure timely once per cell cycle initiation of replication. These observations indicate that replication initiation in E. coli is normally controlled in such a way that all copies of oriC contained within the cell, chromosomal and minichromosomal, are initiated within a fairly short time interval of the cell cycle. Furthermore, both replication and segregation of the bacterial chromosome seem to be controlled by sequences outside the origin itself.  相似文献   

14.
Initiation of chromosomal replication in Escherichia coli is dependent on availability of the initiator protein DnaA. We have introduced into E. coli cells plasmids carrying the chromosomal locus datA, which has a high affinity for DnaA. To be able to monitor oriC initiation as a function of datA copy number, we introduced a minichromosome which only replicates from oriC, using a host cell which replicates its chromosome independently of oriC. Our data show that a moderate increase in datA copy number is accompanied by increased DnaA protein synthesis that allows oriC initiation to occur normally, as measured by minichromosome copy number. As datA gene dosage is increased dnaA expression cannot be further derepressed, and the minichromosome copy number is dramatically reduced. Under these conditions the minichromosome was maintained by integration into the chromosome. These findings suggest that the datA locus plays a significant role in regulating oriC initiation, by its capacity to bind DnaA. They also suggest that auto regulation of the dnaA gene is of minor importance in regulation of chromosome initiation.  相似文献   

15.
Genomic rearrangements leading to deletion or duplication of gene(s) resulting in alterations in gene copy number underlie the molecular lesion in several genetic disorders. Methods currently used to determine gene copy number including real time PCR, southern hybridization, fluorescence in situ hybridization, densitometric scanning of PCR product etc. have certain disadvantages and are also expensive and time consuming. Herein, we describe a simple and rapid method to assess gene copy number using denaturing high performance liquid chromatography (dHPLC). We used X chromosome genes as model to compare the gene copy numbers present on this chromosome in males and females. DNA from these samples were amplified by biplex PCR using primer pairs specific for X chromosome genes only (target gene) and for genes present on both X and Y chromosomes (internal control). Amplified products were analyzed using HPLC under non-denaturing conditions. The ratio of peak areas (target gene/internal control) of the amplified products was approximately twice in female samples than male samples (p < 0.001) demonstrating that the differential gene copy number can be easily detected using this method. This method can potentially be used for diagnostic purpose where the need is to distinguish samples based on the differential gene copy numbers.  相似文献   

16.
Selective chromosome amplification in Vibrio cholerae   总被引:1,自引:0,他引:1  
Most bacteria have one chromosome but some have more than one, as is common in eukaryotes. How multiple chromosomes are maintained in bacteria remains largely obscure. Here we have examined the behaviour of the two Vibrio cholerae chromosomes as a function of growth rate. At slow growth rates, both chromosomes were maintained at copy numbers of one to two per cell. Increasing the growth rate by nutritional shift-up amplified the origin-proximal DNA of the larger chromosome (chrI) to four copies per cell, but not that of the smaller chrII. The latter was amplified when its specific initiator was supplied in excess or a specific negative regulator was deleted. The growth rate-insensitive behaviour of chrII, whose origin is similar to origins of members of a major class of plasmids, was shared by some but not all of several representative plasmids tested in V. cholerae. Also, unlike plasmid replication, chrII replication is known to be initiated at a specific stage of the cell cycle. Raising chrII copy number decreased growth rate, suggesting that this chromosome might serve as a repository for necessary but potentially deleterious genes.  相似文献   

17.
Comparative genomic hybridization (CGH) was employed to survey genomic regions with increased and decreased copy number of the DNA sequence in 15 endometrial cancers [10 cases with microsatellite instability positive (MI+) and 5 cases with MI–]. Twelve of these 15 tumors (80%) showed abnormalities in copy number at one or more of the chromosomal regions. There were no regions with frequent chromosomal losses. Conversely, 11 of 15 cases (73%) showed gains on chromosome arms 1q (8/15; 53%) and/or 8q (6/15; 40%). Concordant gains of both chromosome arms 1q and 8q were observed in all three endometrial cancers of histological grade 3. These results suggest that these two chromosomal regions may contain genes whose increased expression contributes to development and/or progression of endometrial carcinogenesis. Two cases were further analyzed by fluorescence in situ hybridization (FISH) using three probes on chromosome 1 and two probes on chromosome 8 to more accurately determine increases in copy number. We found gains of chromosome 1q to 2.9–3.6 copies per cell and on 8q to 4.4 copies per cell. Received: 9 March 1997 / Accepted: 2 June 1997  相似文献   

18.
We assayed chromosomal abnormalities in hepatoma cell lines using the microarray-based comparative genomic hybridization (array-CGH) method and investigated the relationship between genomic copy number alterations and expression profiles in these hepatoma cell lines. We modified a cDNA array-CGH assay to compare genomic DNAs from seven hepatoma cell lines, as well as DNA from two non-hepatoma cell lines and from normal cells. The mRNA expression of each sample was assayed in parallel by cDNA microarray. We identified small amplified or deleted chromosomal regions, as well as alterations in DNA copy number not previously described. We predominantly found alterations of apoptosis-related genes in Hep3B and HepG2, cell adhesion and receptor molecules in HLE, and cytokine-related genes in PLC/PRF/5. About 40% of the genes showing amplification or loss showed altered levels of mRNA (p < 0.05). Hierarchical clustering analysis showed that the expression of these genes allows differentiation between alpha-fetoprotein (AFP)-producing and AFP-negative cell lines. cDNA array-CGH is a sensitive method that can be used to detect alterations in genomic copy number in tumor cells. Differences in DNA copy alterations between AFP-producing and AFP-negative cells may lead to differential gene expression and may be related to the phenotype of these cells.  相似文献   

19.
Present phytoplankton models typically use a population-level (lumped) modeling (PLM) approach that assumes average properties of a population within a control volume. For modern biogeochemical models that formulate growth as a nonlinear function of the internal nutrient (e.g. Droop kinetics), this averaging assumption can introduce a significant error. Individual-based (agent-based) modeling (IBM) does not make the assumption of average properties and therefore constitutes a promising alternative for biogeochemical modeling. This paper explores the hypothesis that the cell quota (Droop) model, which predicts the population-average specific growth or cell division rate, based on the population-average nutrient cell quota, can be applied to individual algal cells and produce the same population-level results. Three models that translate the growth rate calculated using the cell quota model into discrete cell division events are evaluated, including a stochastic model based on the probability of cell division, a deterministic model based on the maturation velocity and fraction of the cell cycle completed (maturity fraction), and a deterministic model based on biomass (carbon) growth and cell size. The division models are integrated into an IBM framework (iAlgae), which combines a lumped system representation of a nutrient with an individual representation of algae. The IBM models are evaluated against a conventional PLM (because that is the traditional approach) and data from a number of steady and unsteady continuous (chemostat) and batch culture laboratory experiments. The stochastic IBM model fails the steady chemostat culture test, because it produces excessive numerical randomness. The deterministic cell cycle IBM model fails the batch culture test, because it has an abrupt drop in cell quota at division, which allows the cell quota to fall below the subsistence quota. The deterministic cell size IBM model reproduces the data and PLM results for all experiments and the model parameters (e.g. maximum specific growth rate, subsistence quota) are the same as those for the PLM. In addition, the model-predicted cell age, size (carbon) and volume distributions are consistent with those derived analytically and compare well to observations. The paper discusses and illustrates scenarios where intra-population variability in natural systems leads to differences between the IBM and PLM models.  相似文献   

20.
The effect of the copy number of plasmid R1drd-19 on cell division of Escherichia coli K-12 was studied in populations growing as steady-state cultures at different growth rates, the growth rate being varied by use of different carbon sources. The plasmid copy number was also varied by using copy mutants of the R-factor. The mean cell size was larger in populations carrying an R-factor than in R-factorless populations, an effect that was more pronounced at low growth rates and in populations carrying R-factor copy mutants. The increased cell size was due to formation of elongated cells in a fraction of the population and to an increase in the diameter of all cells. The majority of the cells divided at a normal cell length, but the presence of an R-factor caused some cells to elongate, probably by the uncoupling of chromosome replication and cell division. This can be explained as a competition between the chromosome and plasmid replicons for some replication factor(s), presumably acting on both initiation and elongation of replication. The formation of elongated cells was a reversible process, but occasionally some of the elongated cells reached lengths 20 times that of newborn cells. If cell division did not occur at the normal cell size, the septum was not formed until the cell size was four times that of a newborn cell. When an elongated cell divided, it usually formed a polar septum, thus producing a newborn cell of normal cell length. The ability of plasmid-containing cells to omit one cell division but to retain the capacity of dividing one mass doubling later is compatible with a mechanical model for septum formation and cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号