首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T T Myoda  S V Lowther  V L Funanage  F E Young 《Gene》1984,29(1-2):135-143
The structural gene for dihydrofolate reductase (dfrA) from the Bacillus subtilis 168 chromosome has been cloned, along with the thyB gene, on a 4.5-kb insert contained on chimeric plasmid pER1. The presence of the dfrA gene on pER1 was demonstrated by showing that: (i) transformation of Escherichia coli strains RUE10(Thy-) and RUE11(Thy+) with pER1 resulted in a 60 to 130-fold increase in dihydrofolate reductase (DFRase) activity with a turnover number characteristic of that of B. subtilis and (ii) pER1-mediated transformation of trimethoprim-resistant E. coli strain D05, which overproduced a DFRase with a decreased affinity for trimethoprim, resulted in a 41-fold increase in DFRase activity with an affinity for trimethoprim similar to that of the B. subtilis enzyme. The dfrA gene was mapped to the 200 degrees region of the B. subtilis chromosome, and the gene order was established as thyB dfrA ilvA. Furthermore, the dfrA gene was shown to be linked closely (95-99% cotransformation) to the thyB gene.  相似文献   

2.
Recombinant plasmid DNA cloned in E. coli via the bifunctional vector pDH5060 suffered deletions when returned to B. subtilis. However, DNA preparations of identical chimeras containing homologous or heterologous sequences stably transformed B. subtilis at high efficiency when isolated from B. subtilis. The vector pDH5060, however, was not affected and could be stably shuttled between E. coli and B. subtilis at high frequency. These problems affected the transfer of clone pools and individual chimeras, irrespective of the restriction or recombination phenotype of B. subtilis recipients. Deleted chimeras lost at least one end of cloned inserts, and in most cases, flanking plasmid sequences. Single plasmid forms (intact or deleted) were isolated from several hundred individual Cmr-transformants this suggests that events leading to deletion of chimeric plasmid DNA occur during transformation by restriction of unmodified insert sequences propagated in the intermediate host, E. coli. This conclusion is discussed with regard to the mechanism of plasmid transformation in B. subtilis.  相似文献   

3.
4.
We have isolated a 5.4-kilobase fragment of Bacillus subtilis DNA that confers the ability to replicate upon a nonreplicative plasmid. The B. subtilis 168 EcoRI fragment was ligated into the chimeric plasmid pCs540, which contains a chloramphenicol resistance determinant from the Staphylococcus aureus plasmid pC194 and an HpaII fragment from the Escherichia coli plasmid, pSC101. A recE B. subtilis derivative, strain BD224, is capable of maintaining this DNA as an autonomously replicating plasmid. In rec+ recipients, chloramphenicol-resistant transformants do not contain free plasmid. The plasmid is integrated as demonstrated by alterations in the pattern of chromosomal restriction enzyme fragments to which the plasmid hybridizes. The site of plasmid integration was mapped by PBS1-mediated transduction to the metC-PBSX region. A strain was a deletion in the region of defective bacteriophage PBSX differs in the hybridization profile obtained by probing EcoRI digests with this cloned fragment. This same deletion mutant, though proficient in normal recombinational pathways, permits autonomous replication of the plasmid apparently owing to the lack of an homologous chromosomal region with which to recombine. We believe that, like E. coli. B. subtilis contains at least one DNA fragment capable of autonomous replication when liberated from its normally integrated chromosomal site and that this cloned DNA fragment comes from the region of defective bacteriophage PBSX.  相似文献   

5.
Hybrid plasmid DNA cloned in Escherichia coli undergoes deletions when returned to competent Bacillus subtilis, even in defined restriction and modification mutants of strain 168. We have isolated a mutant of B. subtilis MI112 which is stably transformed at high frequency by chimeric plasmid DNA propagated in E. coli.  相似文献   

6.
B Niaudet  A Goze  S D Ehrlich 《Gene》1982,19(3):277-284
The plasmid pHV32, which replicates in Escherichia coli but not in Bacillus subtilis, transformed B. subtilis-competent cells efficiently when linked in vitro to EcoRI B. subtilis DNA segments. The transformed clones carried pHV32 inserted in their chromosomes, and often displayed a mutant phenotype. One of the transformed clones carried pHV32 inserted close to the thyB gene. We cleaved the DNA extracted from this clone with BglII restriction endonuclease, for which no sites exist on pHV32, ligated the released segments and used them to transform E. coli selecting for pHV32-carried genetic markers. The transformants harbored a hybrid plasmid which carried the B. subtilis thyB gene. Circular molecules composed of pHV32 joined to B. subtilis DNA inserted into the chromosome by a Campbell-like recombination event. Linear molecules, in which pHV32 was flanked by two non-adjacent DNA segments, underwent a double cross-over recombination with the chromosome. In this case the chromosomal sequences between the non-adjacent segments were deleted, and replaced by pHV32 sequences.  相似文献   

7.
C H Duncan  G A Wilson  F E Young 《Gene》1977,1(2):153-167
The gene thyP3 from Bacillus subtilis bacteriophage phi 3T was cloned in the plasmid pMB9. The resulting chimeric plasmid, pCD1, is effective in transforming both Escherichia coli and Bacillus subtilis to thymine prototrophy. The activity of the thyP3 gene product, thymidylate synthetase, was assayed and found to be 9 times greater in a transformed strain of Escherichia coli than in a phi 3T lysogen of Bacillus subtilis. The physical location of restriction sites has been determined for two related plasmids pCD1 and pCD2. Hybridization studies clearly indicate that the plasmid gene responsible for Thy+ transformation is the gene from the bacteriophage phi 3T. The lack of restriction in this transformation process is consistent with our previous studies using bacterial DNA in heterospecific exchanges indicating that the nucleotide sequence surrounding the gene is the dominant factor in determining interspecific transformation.  相似文献   

8.
P Carlsson  L Hederstedt 《Gene》1987,61(2):217-224
The 2-oxoglutarate dehydrogenase multienzyme complex is composed of three different subenzymes: 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide transsuccinylase (E2o), and dihydrolipoamide dehydrogenase (E3). Bacillus subtilis E1o and E2o are encoded by the citK and citM genes, respectively. A 3.4-kb BamHI DNA fragment containing citK and citM markers was isolated from a library of B. subtilis DNA in Escherichia coli. Functional E2o was expressed from the cloned DNA both in B. subtilis and E. coli. E2o had an apparent Mr of 60,000 when expressed in E. coli. The B. subtilis E2o component complemented an E. coli E2o-defective mutant in vivo and in vitro. It is concluded that functional B. subtilis E2o can be produced in E. coli and can interact with E. coli and E1o and E3 to form an active chimeric enzyme complex.  相似文献   

9.
Amplification of Bacillus subtilis DNA fragments was performed in Escherichia coli using plasmid RSF2124. The main principle of isolation and cloning hybrid plasmids was described using genes of riboflavin operon as a model. Bac. subtilis DNA was treated with restriction endonuclease EcoR; followed by the agarose gel electrophoretic separation of the resulting fragments. Gels were sliced, DNA was eluted from the corresponding slices and used to transform Bac. subtilis auxotrophs rib A72, rib S110 and rib D107. DNA fraction with the molecular weight 7 . 10(6) daltons restored prototrophy of these mutants. DNA of this fraction was ligated with EcoRI treated plasmid RSF2124 DNA and used for transformation of E. coli rk-mk+. Ampicillin resistant transformants which had lost the colicin production ability, were selected. The presence of riboflavin genes within the hybrid plasmids was detected by transformation of B. subtilis auxotrophs. Three hybrid plasmids (pPR1, pPR2 and pPR3), containing a fragment of Bac. subtilis DNA with the molecular weight 6.8 . 10(-6) daltons including riboflavin operon, were selected. The analysis of the transformation activity of Bac. subtilis DNA and plasmid pPR1 DNA revealed, that there was no restriction activity of Bac. subtilis cells against plasmid DNA amplified in E. coli. Heteroduplex analysis has shown that plasmids pPR1 and pPR2 differ in the orientation of Bac. subtilis DNA fragment. DNA of these plasmids restored prototrophy of the several studied E. coli riboflavin auxotrophs.  相似文献   

10.
Cloning the gyrA gene of Bacillus subtilis.   总被引:8,自引:1,他引:7       下载免费PDF全文
We have isolated an eight kilobase fragment of Bacillus subtilis DNA by specific integration and excision of a plasmid containing a sequence adjacent to ribosomal operon rrn O. The genetic locus of the cloned fragment was verified by linkage of the integrated vector to nearby genetic markers using both transduction and transformation. Functional gyrA activity encoded by this fragment complements E. coli gyrA mutants. Recombination between the Bacillus sequences and the E. coli chromosome did not occur. The Bacillus wild type gyrA gene, which confers sensitivity to nalidixic acid, is dominant in E. coli as is the E. coli gene. The cloned DNA precisely defines the physical location of the gyrA mutation on the B. subtilis chromosome. Since an analogous fragment from a nalidixic acid resistant strain has also been isolated, and shown to transform B. subtilis to nalidixic acid resistance, both alleles have been cloned.  相似文献   

11.
Chimeric plasmids able to replicate in Bacteroides fragilis or in B. fragilis and Escherichia coli were constructed and used as molecular cloning vectors. The 2.7-kilobase pair (kb) cryptic Bacteroides plasmid pBI143 and the E. coli cloning vector pUC19 were the two replicons used for these constructions. Selection of the plasmid vectors in B. fragilis was made possible by ligation to a restriction fragment bearing the clindamycin resistance (Ccr) determinant from a Bacteroides R plasmid, pBF4;Ccr was not expressed in E. coli. The chimeric plasmids ranged from 5.3 to 7.3 kb in size and contained at least 10 unique restriction enzyme recognition sites suitable for cloning. Transformation of B. fragilis with the chimeric plasmids was dependent upon the source of the DNA; generally 10(5) transformants micrograms-1 of DNA were recovered when plasmid purified from B. fragilis was used. When the source of DNA was E. coli, there was a 1,000-fold decrease in the number of transformants obtained. Two of the shuttle plasmids not containing the pBF4 Ccr determinant were used in an analysis of the transposon-like structure encoding Ccr in the R plasmid pBI136. This gene encoding Ccr was located on a 0.85-kb EcoRI-HaeII fragment and cloned nonselectively in E. coli. Recombinants containing the gene inserted in both orientations at the unique ClaI site within the pBI143 portion of the shuttle plasmids could transform B. fragilis to clindamycin resistance. These results together with previous structural data show that the gene encoding Ccr lies directly adjacent to one of the repeated sequences of the pBI136 transposon-like structure.  相似文献   

12.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   

13.
Plasmid pHM2 contains a Bacillus subtilis spoIIA gene and is able to replicate in both Escherichia coli and B. subtilis. The plasmid was mobilized at low frequency by the E. coli F plasmid. Nearly 30% of the mobilized plasmids contained an insert of Tn1000 (gamma delta). Fourteen of the inserts were in the B. subtilis DNA portion of pHM2. Of these, two adjacent inserts abolished expression of the plasmid spoIIA gene in B. subtilis. From the map positions of flanking inserts that do not abolish spoIIA gene expression, it is estimated that the gene is probably not more than 700 bp long.  相似文献   

14.
The trp gene cluster of Bacillus amyloliquefaciens was found to be structurally similar to that of the Enterobacteriaceae. The translation termination codon of the putative trpE gene and the initiation codon for the putative trpD gene overlap at the trpE-trpD junction, and a promoter for the putative trpC gene is suggested to exist. A promoter-probe vector of Bacillus subtilis, pFTB281, was constructed with a DNA fragment of B. amyloliquefaciens, complementing the trpC and trpD mutations of B. subtilis, a 42-base-pair DNA fragment of M13mp7, and the larger EcoRI-PvuII fragment of pUB110, which confers an autonomous replication function and the kanamycin-resistance phenotype to the chimeric plasmid. pFTB281 has BamHI, EcoRI, and SalI cloning sites in the 5'-upstream portion of the protein-coding region of the putative trpD gene, and the insertion of a certain DNA fragment at any of these sites allowed the plasmid to transform a trpD mutant of B. subtilis to the TrpD+ phenotype. DNA fragments showing the promoter function for the trpD gene were obtained from B. amyloliquefaciens and Saccharomyces cerevisiae chromosomes and rho 11 and lambda phage DNAs, but rarely from the DNAs of Escherichia coli and pBR322.  相似文献   

15.
Western blot (immunoblot) analysis of Bacillus subtilis cell extracts detected two proteins that cross-reacted with monospecific polyclonal antibody raised against Escherichia coli initiation factor 2 alpha (IF2 alpha). Subsequent Southern blot analysis of B. subtilis genomic DNA identified a 1.3-kilobase (kb) HindIII fragment which cross-hybridized with both E. coli and Bacillus stearothermophilus IF2 gene probes. This DNA was cloned from a size-selected B. subtilis plasmid library. The cloned HindIII fragment, which was shown by DNA sequence analysis to encode the N-terminal half of the B. subtilis IF2 protein and 0.2 kb of upstream flanking sequence, was utilized as a homologous probe to clone an overlapping 2.76-kb ClaI chromosomal fragment containing the entire IF2 structural gene. The HindIII fragment was also used as a probe to obtain overlapping clones from a lambda gt11 library which contained additional upstream and downstream flanking sequences. Sequence comparisons between the B. subtilis IF2 gene and the other bacterial homologs from E. coli, B. stearothermophilus, and Streptococcus faecium displayed extensive nucleic acid and protein sequence homologies. The B. subtilis infB gene encodes two proteins, IF2 alpha (78.6 kilodaltons) and IF2 beta (68.2 kilodaltons); both were expressed in B. subtilis and E. coli. These two proteins cross-reacted with antiserum to E. coli IF2 alpha and were able to complement in vivo an E. coli infB gene disruption. Four-factor recombination analysis positioned the infB gene at 145 degrees on the B. subtilis chromosome, between the polC and spcB loci. This location is distinct from those of the other major ribosomal protein and rRNA gene clusters of B. subtilis.  相似文献   

16.
Plasmid pHM2 consists of a 3.3 kb insert of Bacillus subtilis DNA in the chimeric plasmid pHV33, and can replicate in Escherichia coli and B. subtilis. In B. subtilis, pHM2 complements the defects resulting from mutations spo-42, spo-50, spo-69 and sas-1 in the spoIIA locus. This complementation can occur in recE4 strains where recombination of the plasmid with the chromosome is prevented, and the chromosome retains the mutant allele. Thus the plasmid carries a functional part of the spoIIA locus; it does not contain the complete locus as it cannot complement several other spoIIA mutations. It is likely that the locus is complex, containing at least two genes.  相似文献   

17.
18.
Infection of Escherichia coli by bacteriophage lambda depends on two membrane protein complexes: (i) maltoporin (LamB) in the outer membrane for adsorption and (ii) the IIC(Man)-IID(Man) complex of the mannose transporter in the inner membrane for DNA penetration. IIC(Man) and IID(Man) are components of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) which together with the IIAB(Man) subunit mediate transport and phosphorylation of sugars. To identify structural determinants important for penetration of lambda DNA, the homologous IIC-IID complexes of E. coli, K. pneumoniae and B. subtilis, and chimeric complexes between the IIC and IID were characterized. All three complexes support sugar transport in E. coli. Only IIC-IID of E. coli and B. subtilis also support bacteriophage lambda infection. The six chimeric complexes had lost transport activity, but three containing IIC of E. coli or B. subtilis continue to support bacteriophage lambda infection. Complexes containing IIC(Man) and fusion proteins between truncated IID(Man) and alkaline phosphatase or beta-galactosidase support penetration of lambda DNA if less than 100 residues are missing from the C-terminus of IID(Man). Truncation of IIC(Man) renders the complex unstable. Taken together, these results suggest, that IIC is the major specificity determinant for lambda infection but that the IIC subunit is stably expressed only in a complex with the IID subunit. Lambda DNA in transit across the periplasmic space, but not transforming plasmid DNA, is inaccessible to the non-specific nuclease NucA of Anabaena sp. targeted to the periplasmic space either in soluble form or as a fusion protein to the C-terminus of IID(Man).  相似文献   

19.
A series of hybrid plasmid molecules which contain both antibiotic resistance genes and the thyP3 gene of the Bacillus subtilis bacteriophage phi 3T have been constructed. Monomeric or restriction enzyme-cleaved plasmid DNA is capable of transforming competent cells to thymine prototrophy only. However, multimeric plasmid DNA can transform competent cells to both thymine prototrophy and antibiotic resistance. Cells which have been transformed to thymine prototrophy only do not contain extrachromosomal plasmid DNA but instead contain the thyP3 gene integrated into the host chromosome; the antibiotic resistance genes, however, do not become integrated into the chromosome. Although the thyP3-containing plasmids have extensive DNA sequence homology with the B. subtilis chromosome, they can be stably maintained, extrachromosomally, even in recE4+ hosts, in complex broth, and in the absence of antibiotics.  相似文献   

20.
The chromosome of Bacillus subtilis phage 2C is a 100-MDa double-stranded DNA molecule, containing hydroxymethyluracil in place of thymine and carrying redundant ends each encompassing 10% of the genome. 2C DNA was cleaved with EcoRI and HindIII, and cloned in the shuttle plasmids pSC 540 and pCP 115, both containing segments originating from B. subtilis and Escherichia coli plasmids. These chimaerical plasmids, carrying the chloramphenicol resistance gene, were unable to replicate in B. subtilis; this ability was restored, however, after the insertion of viral DNA segments. Physical maps of the recombinant plasmids were made; a large deletion of the E. coli-derived segment of pSC 540 was observed (which paralleled a loss of replication in this host), whereas addition of 2C DNA segments in pCP 115 was not accompanied by deletion (replication in E. coli was conserved in this case). Cloned viral segments mapped mostly, but not exclusively, within the redundant ends of 2C DNA. It is suggested that the thirteen recombinant clones carried the replication origin region of phage 2C DNA, and that these sequences originated within or close to the redundant extremities of the viral chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号