首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the biogenesis of adenovirus type 2 messenger RNAs, methylation occurs at the 5′ end (cap) and to internal adenosine residues to yield N6-methyl-adenosine (m6A) (Sommer et al., 1976; Moss &; Koczot, 1976; Wold et al., 1976). The kinetics of accumulation of 3H from methyl-labeled methionine and 14C from uridine into Ad-22-specific RNA was measured late in Ad-2 infection. As reported previously (Nevins &; Darnell, 1978a), the rate of accumulation of [14C]uridine label in nuclear RNA was approximately four- to fivefold faster than in the cytoplasmic RNA, indicating a conservation of about 20% for the total RNA. The initial rates of [3H]methyl label in m6A in nuclear RNA and in the cytoplasmic RNA were approximately equal, suggesting a complete (or nearly complete) conservation of m6A.In accord with the accumulation kinetics, the ratio of 3H to 14C was higher in cytoplasmic RNA than in nuclear RNA that hybridized to equivalent regions of the Ad-2 DNA.A mathematical model was designed to evaluate the accumulation of methyl label in m6A, taking into consideration the three major parameters that affect the accumulation curves: equilibration of the S-adenosyl-methionine pool, the nuclear dwell time of sequences destined to be mRNA, and the cytoplasmic stability of mRNA. The half-time (t12) for pool equilibration was determined experimentally to be 22 minutes and the nuclear dwell time and the mean life-time of cytoplasmic mRNA were estimated from 14C label to be about 30 and 70 minutes, respectively.The model gave an excellent fit to the data when the t12 for pool equilibration time of 24 ± 2 minutes, a nuclear dwell time of 25 ± 10 minutes, and a mean cytoplasmic mRNA life-time of 75 ± 30 minutes were used to evaluate accumulation curves. Even when data from a restricted region of the genome, 40.5–52.6, which encodes the main portion of at least five 3′ co-terminal mRNAs whose spliced junction with the tripartite leader sequence varies from 38, 40, 43, 45, and 48 was analyzed, it appeared that m6A was conserved.Finally, m6A was found to be added in a brief label (3.5 min) mainly to nuclear molecules that were longer than any cytoplasmic RNA. The conservation of m6A and its addition prior to splicing raise the possibility that internal methylations are involved, in the formation of mRNA.  相似文献   

2.
3.
The DNA sequence recognised by the HinfIII restriction endonuclease   总被引:3,自引:0,他引:3  
HinfIII is a type III restriction enzyme (Kauc &; Piekarowicz, 1978) isolated from Haemophilus influenzae Rf. Like other type III restriction endonucleases, the enzyme also catalyses the modification of susceptible DNA. It requires ATP for DNA cleavage and S-adenosyl methionine for DNA methylation. We have determined the DNA sequence recognised by HinfIII to be:
5′-C-G-A-A-T-3′·····3′-G-C-T-T-A-5′
In restriction, the enzyme cleaves the DNA about 25 base-pairs to the right of this sequence. In the modification reaction only one of the strands is methylated, that containing the 5′-C-G-A-A-T-3′ sequence.  相似文献   

4.
5.
6.
7.
8.
9.
RNA (guanine-7) methyltransferase, partially purified from N.crassa mycelia, catalyzed the transfer of the methyl group from S-adenosylmethionine to the 5′ terminus of both N.crassa poly A(+) RNA and reovirus unmethylated mRNA. RNase T2 digestion of the invitro methylated poly A(+) RNA from N.crassa yielded the “cap” structures m 7G(5′)pppAp and m 7G(5′)pppGp in a ratio of 2:1 respectively. RNase T2 digestion of the invitro methylated reovirus mRNA yielded m 7G(5′)pppGp exclusively. The absence of mRNA 2′-0-methyltransferase activity in the enzyme preparation is consistent with the absence of 2′-0-methylation in N.crassa mRNA [Seidel, B. L. and Somberg, E. W. (1978) Arch. Biochem. Biophys. 187, 108–112]. This is the first isolation of an eucaryotic, cellular RNA (guanine-7) methyltransferase that has been shown to methylate homologous substrate.  相似文献   

10.
11.
12.
Ellipticine and 3,5,6,8-tetramethyl-N-methyl phenanthrolinium form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3′–5′)guanosine. These crystals are isomorphous: ellipticine-iodoCpG2 crystals are monoclinic, space group P21 with a = 13.88 A?, b = 19.11 A?, c = 21.42 A?, β = 105.4; TMP-iodoCpG crystals are monoclinic, space group P21, with a = 13.99 A?, b = 19.12 A?, c = 21.31 A?, β = 104.9 °. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least-squares.The asymmetric unit in the ellipticine-iodoCpG structure contains two ellipticine molecules, two iodoCpG molecules, 20 water molecules and 2 methanol molecules, a total of 144 atoms, whereas, in the tetramethyl-N-methyl phenanthrolinium-iodoCpG complex, the asymmetric unit contains two TMP molecules, two iodoCpG molecules, 17 water molecules and 2 methanol molecules, a total of 141 atoms. In both structures, the two iodoCpG molecules are hydrogenbonded together by guanine-cytosine Watson-Crick base-pairing. Adjacent base-pairs within this paired iodoCpG structure are separated by about 6.7 Å; this separation results from intercalative binding by one ellipticine (or TMP) molecule and stacking by the other ellipticine (or TMP) molecule above or below the base-pairs. Base-pairs within the paired nucleotide units are related by a twist of 10 to 12 °. The magnitude of this angular twist is related to conformational changes in the sugar-phosphate chains that accompany drug intercalation. These changes partly reflect the mixed sugar puckering pattern observed: C3′ endo (3′–5′) C2′ endo (i.e. both iodocytidine residues have C3′ endo conformations, whereas both guanosine residues have C2′ endo conformations), and additional small but systematic changes in torsional angles that involve the phosphodiester linkages and the C4′C5′ bond.The stereochemistry observed in these model drug-nucleic acid intercalative complexes is almost identical to that observed in the ethidium-iodoUpA and -iodoCpG complexes determined previously (Tsai et al., 1975a,b,1977; Jain et al., 1977). This stereochemistry is also very similar to that observed in the 9-aminoacridine-iodoCpG and acridine orange-iodoCpG complexes described in the preceding papers (Sakore et al., 1979 Reddy et al., 1979). We have already proposed this stereochemistry to provide a unified understanding of a large number of intercalative drug-DNA (and RNA) interactions (Sobell et al., 1977a,b), and discuss this aspect of our work further in this paper.  相似文献   

13.
14.
15.
16.
3′-deoxyadenosine triphosphate inhibited invitro [3H]UMP incorporation by RNA-dependent RNA polymerases from tobacco and cowpea plants. The inhibition of [3H]UMP incorporation could be reversed by simultaneous addition of higher ATP concentrations but not with increasing concentrations of UTP or when excess ATP was added 10 min after the inhibitor. These results suggest 3′-deoxyadenosine triphosphate competes specifically with ATP in reaction mixtures and results in premature termination of RNA synthesis invitro by RNA-dependent RNA polymerase.  相似文献   

17.
18.
19.
A mouse MOPC21 cDNA previously cloned in plasmid pMB9(Higuchi etal., Proc. Natl. Acad. Sci. 73 (1976) 2136–2140; Wall etal., Nucleic Acid Res. 5 (1978) 3113–3128) and is designated pL21-3 has been extensively characterized. Cleavage of pL21-3 with Hpall has shown the insert to be 910 basepairs long, consistent with the length of the entire variable and constant regions and the untranslated regions. Digestion of pL21-3 with various restriction endonucleases has established that the insert sequence starts from parts of the 5′ leader region and extends downstream to include the untranslated 3′ terminus. 131 nucleotides in the variable region corresponding to amino acids 49–91 have been determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号