首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major secreted isoenzyme of human prostatic acid phosphatase (PAcP) (EC 3.1.3.2), which catalyses p-nitrophenyl phosphate (PNPP) hydrolysis at acid pH values, was found to have phosphotyrosyl protein phosphatase activity since it dephosphorylated three different phosphotyrosine-containing protein substrates. Several lines of evidence are presented to show that the phosphotyrosyl phosphatase and PAcP are the same enzyme. A highly purified PAcP enzyme preparation which contains a single N-terminal peptide sequence was used to test for the phosphotyrosyl phosphatase activity. Both activities comigrated during gel filtration by high performance liquid chromatography. Phosphotyrosyl phosphatase activity and PNPP acid phosphatase activity exhibited similar sensitivities to different effectors. Both phosphatase activities showed the same thermal stability. Specific anti-PAcP antibody reacted to the same extent with both phosphatase activities. PNPP acid phosphatase activity was competitively inhibited by the phosphotyrosyl phosphatase substrate. To characterize further the phosphotyrosyl phosphatase activity, the Km values using different phosphoprotein substrates were determined. The apparent Km values for phosphorylated angiotensin II, anti-pp60src immunoglobulin G and casein were in the nM range for phosphotyrosine residues, which was about 50-fold lower than the Km for phosphoserine residues in casein.  相似文献   

2.
A crude preparation of alkaline phosphatase (EC 3.1.3.1) from calf intestinal mucosa was purified by affinity chromatography on Sepharose-bound derivatives of arsanilic acid, which was found to be a competitive inhibitor of the enzyme. Three biospecific adsorbents were prepared for the chromatography, and the best results were obtained with a tyraminyl-Sepharose derivative coupled with the diazonium salt derived from 4-(p-aminophenylazo)phenylarsonic acid. Alkaline phosphatase was the only enzyme retained by the affinity column in the absence of Pi. The enzyme eluted by phosphate buffer had a specific activity of about 1200 units per mg of protein at pH 10.0, with 5.5mM-p-nitrophenyl phosphate as the substrate.  相似文献   

3.
1. Protein disulphide-isomerase (EC 5.3.4.1) and glutathione-insulin transhydrogenase (EC 1.8.4.2) were resolved by covalent chromatography. Both activities, in a partially purified preparation from bovine liver, bind covalently as mixed disulphides to activated thiopropyl-Sepharose 6B, in a new stepwise elution procedure protein disulphide-isomerase is displaced in mildly reducing conditions whereas glutathione-insulin transhydrogenase is only displaced by more extreme reducing conditions. 2. This together with evidence for partial resolution of the two activities by ion-exchange chromatography, conclusively establishes that the two activities are not alternative activities of a single bovine liver enzyme. 3. Protein disulphide-isomerase, partially purified by a published procedure, has now been further purified by covalent chromatography and ion-exchange chromatography. The final material is 560-fold purified relative to a bovine liver homogenate; it has barely detectable glutathione-insulin transhydrogenase activity. 4. The purified protein disulphide-isomerase shows a single major band on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis corresponding to a mol.wt. of 57000. 5. The purified protein disulphide-isomerase has Km values for 'scrambled' ribonuclease and dithiothreitol of 23 microgram/ml and 5.4 microM respectively and has a sharp pH optimum at 7.5. The enzyme has a broad thiol-specificity, and several monothiols, at 1mM, can replace dithiothreitol. 6. The purified protein disulphide-isomerase is completely inactivated after incubation with a 2-3 fold molar excess of iodoacetate. The enzyme is also significantly inhibited by low concentrations of Cd2+ ions. These findings strongly suggest the existence of a vicinal dithiol group essential for enzyme activity. 7. When a range of thiols were used as co-substrates for protein disulphide-isomerase activity, the activities were found to co-purify quantitatively, implying the presence of a single protein disulphide-isomerase of broad thiol-specificity. Glutathione-disulphide transhydrogenase activities, assayed with a range of disulphide compounds, did not co-purify quantitatively.  相似文献   

4.
The phospholipid-dependence of the (Na-++K-+)-dependent ATPase (adenosine triphosphatase) (EC 3.6.1.3) and associated K-+-dependent phosphatase activity (EC 3.6.1.7) have been compared. Unlike the (Na-++K-+)-dependent ATPase activities, the K-+-dependent phosphatase activities of a number of different preparations were not closely correlated with their total phospholipid contents. After partial lipid depletion with a single extraction in Lubrol W the residual ATPase and phosphatase activities were correlated, but their magnitudes were quite different: on average only about 5% of the former remained compared with 50% of the latter. A similar differential effect on these activities was found after extraction with deoxycholate. In contrast with the ATPase, consistent restoration of the phosphatase activity of Lubrol-extracted enzymes by added exogenous phospholipids was not observed. We conclude that, although the K-+-dependent phosphatase may be lipid-dependent, the lipid requirement must be different from that of the complete ATPase system, and this difference should help investigations of their relationship.  相似文献   

5.
Carboxymethyl dextrans (CM-Ds) were used on an HPLC ion-exchange column to obtain significantly enriched alkaline phosphatase (EC 3.1.3.1) from a sample of Escherichia coli periplasmic space proteins without significant loss of enzymatic activity. The ability of CM-Ds to separate alkaline phosphatase even when the column was 80-85% saturated with protein demonstrates the potential for high column capacity using CM-Ds. In addition, the fractions containing alkaline phosphatase and CM-Ds were reapplied to the same ion-exchange column under different buffer conditions and purified to homogeneity by salt gradient elution chromatography, thus demonstrating the compatibility of CM-Ds with the latter chromatographic method. The two-step chromatographic procedure yielded enzyme of purity comparable to that of electrophoretically purified E. coli alkaline phosphatase obtained commercially. These studies demonstrate that HPLC displacement chromatography is a mild procedure which allows rapid, quantitative purification of an enzyme. Scaling up with larger columns should allow purification of enzymes of a commercial basis.  相似文献   

6.
Fractions composed primarily of cells (Fraction I), membrane fragments (Fraction II) and matrix vesicles (Fraction III) were isolated from chick epiphyseal cartilage. The characteristics of the alkaline phosphatase (EC 3.1.3.1), pyrophosphatase (EC 3.6.1.1) and ATPase (EC 3.6.1.3) activities in the matrix vesicle fraction were studied in detail. Mg-2-+ was not absolutely essential to any of the activities, but at low levels was stimulatory in all cases. Higher concentrations inhibited both pyrophosphatase and ATPase activities. Both the stimulatory and inhibitory effects were pH-dependent. Ca-2-+ stimulated all activities weakly in the absence of Mg-2-+. However, when Mg-2-+ was present, Ca-2-+ was slightly inhibitory. Thus, none of the activities appear to have a requirement for Ca-2-+, and hence would not seem to be involved with active Ca-2-+ transport in the typical manner. The distribution of alkaline phosphatase, pyrophosphatase, and Mg-2-+ ATPase activities among the various cartilage fractions was identical, and concentrated primarily in the matrix vesicles. Conversely, the highest level of (Na-+ + K-+)-ATPase activity was found in the cell fraction. All activites showed nearly identical sensitivities to levamisole (4 - 10-3 M) which caused nearly complete inhibition of alkaline phosphatase and pyrophosphatase. About 10-15% of the ATPase activity was levamisole-insensitive. The data are consistent with the concept that the Mg-2-+-ATPase and pyrophosphatase activities of matrix vesicles stem from one enzyme, namely, alkaline phosphatase.  相似文献   

7.
Salivary apyrase of Rhodnius prolixus. Kinetics and purification.   总被引:2,自引:0,他引:2       下载免费PDF全文
The salivary apyrase activity of the blood-sucking bug Rhodnius prolixus was found to reside in a true apyrase (ATP diphosphohydrolase, EC 3.6.1.5) enzyme. The crude saliva was devoid of 5'-nucleotidase, inorganic pyrophosphatase, phosphatase and adenylate kinase activities. ATP hydrolysis proceeded directly to AMP and Pi without significant accumulation of ADP. Km values for ATP and ADP hydrolysis were 229 and 291 microM respectively. Ki values for ATP and ADP inhibition of ADP and ATP hydrolysis were not different from the Km values, and these experiments indicated competitive inhibition. Activities were purified 126-fold by combined gel filtration and ion-exchange chromatography procedures with a yield of 63%. The purified enzyme displayed specific activities of 580 and 335 mumol of Pi released/min per mg of protein for ATP and ADP hydrolysis respectively. The action of the purified enzyme on several phosphate esters indicates that Rhodnius apyrase is a non-specific nucleosidetriphosphate diphosphohydrolase.  相似文献   

8.
1. Protein disulphide-isomerase and glutathione-insulin transhydrogenase activities were assayed in parallel through a conventional purification of protein disulphide-isomerase from ox liver. 2. Throughout a series of purification steps (differential centrifugation, acetone extraction, (NH4)2SO4 precipitation and ion-exchange chromatography), the two activities appeared in the same fractions but were purified to different extents. 3. The final sample was 143-fold purified in protein disulphide-isomerase but only 10-fold purified in glutathione-insulin transhydrogenase; nevertheless the two activities in this preparation were not resolved by high-resolution isoelectric focusing and both showed pI4.65. 4. In a partially purified preparation containing both activities, glutathione-insulin transhydrogenase was far more sensitive to heat denaturation than was protein disulphide-isomerase; conversely protein disulphide-isomerase was more sensitive to inactivation by deoxycholate. 5. The data are inconsistent with a single enzyme being responsible for all the protein disulphide-isomerase and glutathione-insulin transhydrogenase activity of ox liver. It is suggested that several similiar thiol-protein disulphide oxidoreductases of overlapping specificities may better account for the data.  相似文献   

9.
Phosphatase activities in sea urchin eggs and plutei were investigated by means of histochemical staining of immunoprecipitates. Two protein fractions were obtained by extraction in a hypotonic medium and by detergent treatment of the residual pellet. Three distinctly different phosphatase activities were discerned, nucleoside diphosphatase (EC 3.6.1.6.), acid phosphatase (EC 3.1.3.2.) and alkaline phosphatase (EC 3.1.3.1.). The nucleoside diphosphatase activity, which was confined to one antigen, was present in both water soluble and detergent extracts and at roughly the same concentration in eggs and plutei. By means of a monospecific antiserum the immunological identify of this antigen was established in all instances. The acid phosphatase activity, which was displayed by ten detergent extracted antigens in eggs, was only found in five detergent extracted antigens in plutei. This decrease in number of enzyme active antigens was also reflected by a general decrease in number of enzyme active antigens was also reflected by a general decrease in activity as assessed by quantitative determinations. Furthermore, by means of absorbed antisera it was established that two or three of the acid phosphatase active antigens were "egg specific". Another acid phosphatase active antigen, which was common to both developmental stages, was investigated by a monospecific antiserum. While this antigen was found in both soluble fractions, it was only enzymatically active when extracted with detergent. Alkaline phosphatase active antigens were only found in the detergent extract of plutei. However, immunoprecipitates with this activity appeared both with antiserum against unfertilized eggs and with antiserum against plutei. This suggests that the egg contained the antigens in an enzymatically inactive form.  相似文献   

10.
Hexosaminidases (EC 3.2.1.30) A and B from human kidney cortex were purified to homogeneity by using concanavalin A affinity chromatography, ion-exchange chromatography and gel filtration. The yield of homogeneous isoenzymes improved approx. 20-fold, giving preparations of hexosaminidases A and B with specific activities of about 200 and 325 units/mg of protein respectively. The kinetic and structural properties of kidney hexosaminidase isoenzymes were studied and compared with the hexosaminidase isoenzymes from human placenta. The amino acid composition of hexosaminidase A was significantly different from that of hexosaminidase B. In the event of success in developing enzyme-replacement therapy for Tay-Sachs and Sandhoff's diseases, this modified procedure can furnish larger amounts of homogeneous isoenzymes.  相似文献   

11.
M Fontés 《Biochimie》1976,58(10):1155-1158
Acid phosphatase (EC. 3.1.3.2) has been separated by molecular sieving into two fractions and these fractions were purified by Sephadex ion-exchange chromatography. One of the purified enzymes (fraction II) was purified 830 fold and had a specific activity of 34 international units per mg protein at 37 degrees C and at a pH of 4.9. The Km value with p-nitrophenylphosphate as substrate was 9.10(-4) M and the kinetic studies showed no possibilities of control by allosteric transitions, and no effect of metabolites (amino acids) on the reaction velocity.  相似文献   

12.
Low molecular weight acid phosphatase/phosphotyrosyl protein phosphatase is largely expressed in chick brain tissue during development. The enzyme was purified from brain extract prepared from 19-day-old chick embryos and from adult chickens using ammonium sulfate fractionation, gel filtration on Sephadex G-75 and two DEAE-Cellulose ion-exchange chromatography steps. The purified enzymes from embryo and adult chick brains show identical molecular weight values (about 18-20 kDa) and biochemical and structural properties such as substrate specificity, sensitivity to inhibitors, and number of free reactive sulphydryl groups. These data suggest that they are the same enzyme protein. Although the total acid phosphatase activity does not change appreciably during development, the activity associated with the low molecular weight acid phosphatase/phosphotyrosyl protein phosphatase markedly increases after birth and reaches the adult values within the first week of life. Taken together, our results suggest an involvement of the low molecular weight acid phosphatase/phosphotyrosyl protein phosphatase in postnatal development and maturation of chick brain tissue. The variations in tyrosine phosphorylation profile of chick brain polypeptides analyzed by Western blotting at the same developmental stages are also reported.  相似文献   

13.
Aqueous two-phase partitioning has been elaborated in order to improve the purification of alkaline phosphatase from calf intestine in larger scale. The laborious precipitation and centrifugation steps for the removal of the enzyme from the cell debris and from the bulk protein were replaced by this technique yielding a high recovery (88%) and a significant lower time requirement. For the preparation of 100.000 units (46 mg) of a homogeneous enzyme 2.0 kg of a system containing 200 g PEG 4000 and only 10 g dextran M 70 is necessary. Affinity partitioning in aqueous two-phase systems was used to screen 41 dyes for selecting a suitable ligand for the dye-ligand chromatography of the enzyme. In the case of alkaline phosphatase the results obtained by affinity partitioning coincide with the experimental requirements for the affinity chromatography of the enzyme. Procion Navy HE-R (Blue 171) exhibits a high affinity, selectivity and binding capacity for the enzyme compared with other dyes investigated. The purification procedure provided the same degree in purity (2200 U/mg) and yield (59%) if mucosa or chyme was applied as starting material. In the range of practical use the purified enzyme contains no detectable activities of DNAses (endonucleases) and DNA-nicking activities. The contamination with phosphodiesterase I (EC. 3.1.4.1.) is less than 0.01%.  相似文献   

14.
Phosphatase activity in sea urchin embryonic antigens was investigated by histochemical staining of immunoprecipitates separated by two-dimensional (crossed) immunoelectrophoresis. Unfertilized eggs were homogenized in a hypotonic medium which solubilized cytoplasmic antigens. Antigens integrated in membranes or enclosed in particles were solubilized by detergent treatment of the residual pellet. Two different phosphatase activities were discerned in the unfertilized eggs, nucleoside diphosphatase (EC 3.6.1.6.) and acid phosphatase (EC 3.1.3.2.). Nucleoside diphosphatase activity was obtained in both the water soluble and detergent extracted protein fractions. This activity was confined to one antigen. Acid phosphatase acitivity on the other hand was almost exclusively obtained in the detergent extracted fraction and about ten distinct antigens displayed this activity. The nucleoside diphosphatase active antigen preferentially hydrolyzed purine nucleoside diphosphates and to a lesser degree triphosphates of these nucleosides. The acid phosphatase active antigens had a broader substrate specificity and hydrolyzed equally well beta-glycerophosphate and nucleotides. Both activities were essentially inactive at neutral or alkaline pH values. The activities were inhibited by p-choloromercuribenzoate and accordingly stimulated by cysteine. Tartrate and sodium fluoride, however, inhibited the acid phosphatase activity while nucleoside diphosphatase activity was either stimulated or not affected at all by these agents.  相似文献   

15.
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C.  相似文献   

16.
Three peaks of protein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) activity (fractions a, b and c) acting on muscle phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) were separated by DEAE-cellulose chromatography of yeast extracts. In contrast to fractions a and b, only fraction c was able to liberate phosphate from 32P-labelled inactivated yeast phosphorylase. The activity of fraction c on both substrates was totally dependent on the presence of bivalent metal ions (Mg2+, Mn2+), and was activated by Mg . ATP. Following freezing in the presence of mercaptoethanol, fractions a and b were also able to dephosphorylate yeast phosphorylase. Rabbit muscle phosphoprotein phosphatase inhibitors 1 and 2 showed that yeast phosphatases acting on muscle phosphorylase were inhibited by inhibitor 2 but not by inhibitor 1. The action of fraction c on yeast phosphorylase was not inhibited by either inhibitor. The native yeast phosphorylase phosphatase (EC 3.1.3.17) was purified 8000-fold by ion-exchange chromatography, casein-Sepharose chromatography and Sephadex G-200 gel filtration. The purified enzyme was unable to dephosphorylate rabbit muscle phosphorylase a, but acted on casein phosphate (Km 3.3 mg/ml). Molecular weight was estimated to be 78 000 and pH optimum 6.5-7.5. Activity of the enzyme was dependent on bivalent metal ions (Mg2+, Mn2+) and was inhibited by fluoride (Ki 20 mM) and succinate (Ki 10 mM).  相似文献   

17.
(Ca2+ + Mg2+)ATPase (EC 3.6.1.3) was solubilized from human erythrocyte membranes by detergent extraction with Triton N-101 (0.5 mg/mg membrane protein) and purified by calmodulin affinity chromatography. ATPase activity was assayed in mixtures of Triton N-101 and phospholipid, without reconstitution into bilayer vesicles. At low levels of phospholipid (5 micrograms/ml), the ATPase activity was highly sensitive to the detergent concentration, with maximal activity occurring at or near the critical micelle concentration of the detergent. With increased amounts of phospholipid (50 micrograms/ml), detergent concentrations greater than the critical micelle concentration were required for maximal activity. Detergent alone did not support ATPase activity. Sonicated phospholipid in the form of vesicles was equally ineffective. Activity seemed to be dependent on the presence of detergent/phospholipid mixed micelles. The acidic phospholipids, phosphatidylserine and phosphatidylinositol, as well as the commercial phospholipid preparation, Asolectin, gave activities five to eight times greater than the same amount of phosphatidylcholine. Mixtures of phosphatidylserine and phosphatidylcholine produced intermediate ATPase activities, with the maximal value dependent on the phosphatidylserine concentration. Addition of phosphatidylcholine to fixed concentrations of phosphatidylserine caused a rise in activity that was independent of the ratio of the two phospholipids or the total phospholipid concentration. Phosphatidylcholine may therefore be irreplaceable for some aspect of ATPase function. The number of phospholipid molecules present in mixed micelles at maximal ATPase activity was calculated to be near 50. This value implied that the hydrophobic surface of the ATPase molecule must be completely coated by a single layer of phospholipid molecules for maximum activity to occur.  相似文献   

18.
Lin PP 《Plant physiology》1980,66(3):368-374
A soybean histone-type protein kinase was used to prepare 32P-labeled histone H1 as substrate for purification and characterization of a phosphoprotein phosphatase (EC 3.1.3.16) from soybean hypocotyls. The phosphatase has been purified 169-fold by ammonium sulfate fractionation, ethanol precipitation, and chromatography on Sephadex G-150, DEAE-Sephadex A-25 and Sephadex G-100. The activity of the phosphoprotein phosphatase is distinct from that of acid and alkaline phosphatases (EC 3.1.3.1) as well as from that of nucleotidases. The final enzyme preparation does not contain histone protease activity, although it can be detected during the early stages of purification. The protease(s) apparently can attack phosphorylated histone H1, indicating that phosphorylation does not protect the protein against proteolytic degradation.  相似文献   

19.
In order to establish whether a specific adenosine triphosphatase is present in yeast cell wall, hydrolysis rates for p-nitrophenylphosphate (acid phosphatase activity) and for ATP (ATPase activity) were compared under various conditions. Rate determinations were made with both, intact cells and with preparations containing secreted enzymes from protoplasts. Acid phosphatase and ATPase activities had the same pH profile and were susceptible in the same way to the repression by orthophosphate and to the inhibition by 2-deoxyglucose. The Lineweaver-Burk plot shows biphasic kinetic behaviour for the hydrolysis of either p-nitrophenylphosphate or ATP. This suggests the existence of two enzymes with different affinities for the substrates, or one enzyme with at least two active sites. The two activities differ in thermostability and only one activity could be completely abolished by heat treatment. The thermostable enzyme activity had K-m values of 0.475 mM for p-nitrophenylphosphate, and 0.040 mM for ATP. ATP behaved as a partially competitive inhibitor of p-nitrophenylphosphate hydrolysis. Substrate competition studies showed that only a non-specific acid phosphatase is responsible for the hydrolysis of ATP.  相似文献   

20.
Alkaline phosphomonoesterase (EC 3.1.3.1) activity from Blastocladiella emersonii, while displaying typically broad substrate specificity for phosphorylated organic compounds, exhibited nearly complete substrate preference for N-acetylglucosamine-6-phosphate over N-acetylglucosamine-1-phosphate. Enzyme in zoospore extracts was purified 43-fold by differential centrifugation followed by gel filtration (Sephadex G-200) and then by ion-exchange chromatography (diethylaminoethyl-cellulose). The partially purified enzyme displayed an apparent molecular weight (Sephadex G-200) of approximately 170,000. The activity of partially purified enzyme exhibited a pH optimum of pH 8.5, did not require a metal divalent cation, but was inhibitable by ethylenediaminetetraacetic acid. During the life cycle of the organism, the specific activity of the phosphatase decreased slightly during germination and early exponential growth but then increased about 4.5-fold during sporulation. B. emersonii alkaline phosphatase does not appear to be a repressible enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号