首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocyte growth factor activator inhibitor-1 (HAI-1) was initially identified as cognate inhibitor of matriptase, a membrane-bound serine protease. Paradoxically, HAI-1 is also required for matriptase activation, a process that requires sphingosine 1-phosphate (S1P)-mediated translocation of the protease to cell-cell junctions in human mammary epithelial cells. In the present study, we further explored how HAI-1 regulates this protease. First, we observed that after S1P treatment HAI-1 was cotranslocated with matriptase to cell-cell junctions and that the cellular ratio of HAI-1 to matriptase was maintained during this process. However, when this ratio was changed by cell treatment with HAI-1 small interfering RNA or anti-HAI-1 MAb M19, spontaneous activation of matriptase occurred in the absence of S1P-induced translocation; S1P-induced matriptase activation was also enhanced. These results support a role for HAI-1 in protection of cell from uncontrolled matriptase activation. We next expressed matriptase, either alone or with HAI-1 in breast cancer cells that do not endogenously express either protein. A defect in matriptase trafficking to the cell surface occurred if wild-type matriptase was expressed in the absence of HAI-1; this defect appeared to result from matriptase toxicity to cells. Coexpression with matriptase of wild-type HAI-1, but not HAI-1 mutants altered in its Kunitz domain 1, corrected the trafficking defect. In contrast, catalytically defective matriptase mutants were normal in their trafficking in the absence of HAI-1. These results are also consistent with a role for HAI-1 to prevent inappropriate matriptase proteolytic activity during its protein synthesis and trafficking. Taken together, these results support multiple roles for HAI-1 to regulate matriptase, including its proper expression, intracellular trafficking, activation, and inhibition. protease-activated receptor-2; hepatocyte growth factor; urokinase; sphingosine 1-phosphate; Kunitz domain  相似文献   

2.
Sphingosine 1-phosphate (S1P), a bioactive phospholipid, simultaneously induces actin cytoskeletal rearrangements and activation of matriptase, a membrane-associated serine protease in human mammary epithelial cells. In this study, we used a monoclonal antibody selective for activated, two-chain matriptase to examine the functional relationship between these two S1P-induced events. Ten minutes after exposure of 184 A1N4 mammary epithelial cells to S1P, matriptase was observed to accumulate at cell-cell contacts. Activated matriptase first began to appear as small spots at cell-cell contacts, and then its deposits elongated along cell-cell contacts. Concomitantly, S1P induced assembly of adherens junctions and subcortical actin belts. Matriptase localization was observed to be coincident with markers of adherens junctions at cell-cell contacts but likely not to be incorporated into the tightly bound adhesion plaque. Disruption of subcortical actin belt formation and prevention of adherens junction assembly led to prevention of accumulation and activation of the protease at cell-cell contacts. These data suggest that S1P-induced accumulation and activation of matriptase depend on the S1P-induced adherens junction assembly. Although MAb M32, directed against one of the low-density lipoprotein receptor class A domains of matriptase, blocked S1P-induced activation of the enzyme, the antibody had no effect on S1P-induced actin cytoskeletal rearrangement. Together, these data indicate that actin cytoskeletal rearrangement is necessary but not sufficient for S1P-induced activation of matriptase at cell-cell contacts. The coupling of matriptase activation to adherens junction assembly and actin cytoskeletal rearrangement may serve to ensure tight control of matriptase activity, restricted to cell-cell junctions of mammary epithelial cells.  相似文献   

3.
Activation of single-chain, latent matriptase, a type II transmembrane serine protease, depends on the weak proteolytic activity of its own zymogen as well as its cognate inhibitor, hepatocyte growth factor activator inhibitor 1 (HAI-1). Oligomerization of matriptase zymogens and HAI-1, and probably its interaction with other proteins, has been proposed to occur during matriptase activation. In the present study, we examined the cellular events associated with matriptase activation triggered either by the physiological inducer sphingosine 1-phosphate (S1P) or by a chemical inducer, the polyanionic compound suramin. S1P-induced matriptase translocation to cell-cell contacts, where it is activated, is an F-actin polymerization-dependent process. Conversely, suramin-induced matriptase accumulation and activation at vesicle-like structures is an F-actin polymerization-independent process. While matriptase activation can occur at different subcellular locations, both S1P- and suramin-induced matriptase accumulation form unique subcellular structures, termed activation foci, where oligomerization of matriptase zymogens and HAI-1 may occur, promoting matriptase activation. Furthermore, matriptase activation may be regulated by intracellular signaling, because Ro 31-8220, a bisindolylmaleimide protein kinase C inhibitor, inhibited both S1P- and suramin-induced activation. The requirement of HAI-1 for matriptase activation and the coincidence of HAI-1 and matriptase in activation foci apparently provide rapid access of HAI-1 for the inhibition of matriptase immediately after its activation. Indeed, all activated matriptase was detected in complexes with HAI-1 only 5 min after suramin stimulation. The close temporospatial coupling of matriptase activation with its inhibition suggests that the proteolytic activity of this enzyme must be well controlled and that the proteolysis of matriptase substrates may be tightly regulated by this mechanism. sphingosine 1-phosphate; suramin  相似文献   

4.
Matriptase is an epithelial-derived, integral membrane serine protease. The enzyme was initially isolated from human breast cancer cells and has been implicated in breast cancer invasion and metastasis. In the current study, using active matriptase isolated from human milk, we demonstrate that matriptase is able to cleave various synthetic substrates with arginine or lysine as their P1 sites and prefers small side chain amino acids, such as Ala and Gly, at P2 sites. For the most reactive substrates, N-tert-butoxycarbonyl (N-t-Boc)-gamma-benzyl-Glu-Ala-Arg-7-amino-4-methylcoumarin (AMC) and N-t-Boc-Gln-Ala-Arg-AMC, the K(m) values were determined to be 3. 81 and 4.89 microm, respectively. We further demonstrated that matriptase can convert hepatocyte growth factor/scattering factor to its active form, which can induce scatter of Madin-Darby canine kidney epithelial cells and can activate c-Met tyrosine phosphorylation in A549 human lung carcinoma cells. In addition, we noted that matriptase can activate urokinase plasminogen activator but has no affect on plasminogen. These results suggest that matriptase could act as an epithelial, upstream membrane activator to recruit and activate stromal-derived downstream effectors important for extracellular matrix degradation and epithelial migration, two major events of tissue remodeling, cancer invasion, and metastasis.  相似文献   

5.
The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation.  相似文献   

6.
In live cells, autoactivation of matriptase, a membrane-bound serine protease, can be induced by lysophospholipids, androgens, and the polyanionic compound suramin. These structurally distinct chemicals induce different signaling pathways and cellular events that somehow, in a cell type-specific manner, lead to activation of matriptase immediately followed by inhibition of matriptase by hepatocyte growth factor activator inhibitor 1 (HAI-1). In the current study, we established an analogous matriptase autoactivation system in an in vitro cell-free setting and showed that a burst of matriptase activation and HAI-1-mediated inhibition spontaneously occurred in the insoluble fractions of cell homogenates and that this in vitro activation could be attenuated by a soluble suppressive factor(s) in cytosolic fractions. Immunofluorescence staining and subcellular fractionation studies revealed that matriptase activation occurred in the perinuclear regions. Solubilization of matriptase from cell homogenates by Triton X-100 or sonication of cell homogenates completely inhibited the effect, suggesting that matriptase activation requires proper lipid bilayer microenvironments, potentially allowing appropriate interactions of matriptase zymogens with HAI-1 and other components. Matriptase activation occurred in a narrow pH range (from pH 5.2 to 7.2), with a sharp increase in activation at the transition from pH 5.2 to 5.4, and could be completely suppressed by moderately increased ionic strength. Protease inhibitors only modestly affected activation, whereas 30 nM (5 µg/ml) of anti-matriptase LDL receptor domain 3 monoclonal antibodies completely blocked activation. These atypical biochemical features are consistent with a mechanism for autoactivation of matriptase that requires protein-protein interactions but not active proteases. hepatocyte growth factor activator inhibitor 1; protease activation; low-density lipoprotein  相似文献   

7.
The type 2 transmembrane serine protease matriptase is under tight control primarily by the actions of the integral membrane Kunitz-type serine protease inhibitor HAI-1. Growing evidence indicates that HAI-2 might also be involved in matriptase inhibition in some contexts. Here we showed that matriptase inhibition by HAI-2 depends on the subcellular localizations of HAI-2, and is observed in breast cancer cells but not in mammary epithelial cells. HAI-2 is co-expressed with matriptase in 21 out of 26 human epithelial and carcinoma cells examined. HAI-2 is also a potent matriptase inhibitor in solution, but in spite of this, HAI-2 inhibition of matriptase is not observed in all contexts where HAI-2 is expressed, unlike what is seen for HAI-1. Induction of matriptase zymogen activation in mammary epithelial cells results in the formation of matriptase-HAI-1 complexes, but matriptase-HAI-2 complexes are not observed. In breast cancer cells, however, in addition to the appearance of matriptase-HAI-1 complex, three different matriptase-HAI-2 complexes, are formed following the induction of matriptase activation. Immunofluorescent staining reveals that activated matriptase is focused at the cell-cell junctions upon the induction of matriptase zymogen activation in both mammary epithelial cells and breast cancer cells. HAI-2, in contrast, remains localized in vesicle/granule-like structures during matriptase zymogen activation in human mammary epithelial cells. In breast cancer cells, however, a proportion of the HAI-2 reaches the cell surface where it can gain access to and inhibit active matriptase. Collectively, these data suggest that matriptase inhibition by HAI-2 requires the translocation of HAI-2 to the cell surface, a process which is observed in some breast cancer cells but not in mammary epithelial cells.  相似文献   

8.
Matriptase is an epithelial-derived, integral membrane, trypsin-like serine protease. We have shown previously that matriptase exists both in complexed and noncomplexed forms. We now show that the complexed matriptase is an activated, two-chain form, which is inhibited in an acid-sensitive, reversible manner through binding to its cognate, Kunitz-type inhibitor, HAI-1 (hepatocyte growth factor activator inhibitor-1). Conversely, the majority of the noncomplexed matriptase is a single-chain zymogen, which lacks binding affinity to HAI-1, suggesting that matriptase, similar to most other serine proteases, is activated by proteolytic cleavage at a canonical activation motif. We have now generated mAbs specific for the conformational changes associated with the proteolytic activation of matriptase. Using these mAbs, which specifically recognize the two-chain form of matriptase, we demonstrate that matriptase is transiently activated on 184A1N4 human mammary epithelial cell surfaces following their exposure to serum. The ability of serum to activate matriptase is highly conserved across reptilian, avian, and mammalian species. This serum-dependent activation of matriptase on epithelial cell surfaces is followed by ectodomain shedding of both matriptase and its Kunitz-type inhibitor.  相似文献   

9.
Matriptase, a type 2 transmembrane serine protease, is predominately expressed by epithelial and carcinoma cells in which hepatocyte growth factor activator inhibitor 1 (HAI-1), a membrane-bound, Kunitz-type serine protease inhibitor, is also expressed. HAI-1 plays dual roles in the regulation of matriptase, as a conventional protease inhibitor and as a factor required for zymogen activation of matriptase. As a consequence, activation of matriptase is immediately followed by HAI-1-mediated inhibition, with the activated matriptase being sequestered into HAI-1 complexes. Matriptase is also expressed by peripheral blood leukocytes, such as monocytes and macrophages; however, in contrast to epithelial cells, monocytes and macrophages were reported not to express HAI-1, suggesting that these leukocytes possess alternate, HAI-1-independent mechanisms regulating the zymogen activation and protease inhibition of matriptase. In the present study, we characterized matriptase complexes of 110 kDa in human milk, which contained no HAI-1 and resisted dissociation in boiling SDS in the absence of reducing agents. These complexes were further purified and dissociated into 80-kDa and 45-kDa fragments by treatment with reducing agents. Proteomic and immunological methods identified the 45-kDa fragment as the noncatalytic domains of matriptase and the 80-kDa fragment as the matriptase serine protease domain covalently linked to one of three different secreted serpin inhibitors: antithrombin III, 1-antitrypsin, and 2-antiplasmin. Identification of matriptase-serpin inhibitor complexes provides evidence for the first time that the proteolytic activity of matriptase, from those cells that express no or low levels of HAI-1, may be controlled by secreted serpins. protease; type 2 transmembrane serine protease; protease inhibitor; ST-14; hepatocyte growth factor activator inhibitor 1  相似文献   

10.
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.  相似文献   

11.
Breast cancer tumorigenesis is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix as well as cleaving and activating growth factors and signaling receptors that are critically involved in neoplastic progression. Multiple studies implicate the membrane anchored serine protease matriptase (also known as MT-SP1 and epithin) in breast cancer. The pro-form of the GPI-anchored serine protease prostasin has recently been identified as a physiological substrate of matriptase and the two proteases are co-expressed in multiple healthy tissues. In this study, the inter-relationship between the two membrane-anchored serine proteases in breast cancer was investigated using breast cancer cell lines and breast cancer patient samples to delineate the association between matriptase and prostasin. We used Western blotting to determine the expression of matriptase and prostasin proteins in a panel of breast cancer cell lines and immunohistochemistry to assess the expression in serial sections from breast cancer tissue arrays. We demonstrate that the expression of matriptase and prostasin is closely correlated in breast cancer cell lines as well as in breast cancer tissue samples. Furthermore, matriptase and prostasin display a near identical spatial expression pattern in the epithelial compartment of breast cancer tissue. These data suggest that the matriptase-prostasin cascade might play a critical role in breast cancer.  相似文献   

12.
The epithelial extracellular serine protease activation cascade involves matriptase (PRSS14) and prostasin (PRSS8), capable of modulating epidermal growth factor receptor (EGFR) signaling. Matriptase activates prostasin by cleaving in the amino-terminal pro-peptide region of prostasin, presumably at the Arg residue of position 44 (R44) of the full-length human prostasin. Using an Arg-to-Ala mutant (R44A) human prostasin, we showed in this report that the cleavage of prostasin by matriptase is at Arg44. This prostasin proteolytic activation site is also cleaved by hepsin (TMPRSS1) to produce active prostasin capable of forming a covalent complex with protease nexin 1 (PN-1). An amino-terminal truncation of EGFR in the extracellular domain (ECD) was observed when the receptor was co-expressed with hepsin. Hepsin and matriptase appear to cleave the EGFR ECD at different sites, while the hepsin cleavage is not affected by active prostasin, which enhances the matriptase cleavage of EGFR. Using hepsin as the prostasin-activating protease in cells co-transfected with EGFR, we showed that active prostasin does not cleave the EGFR ECD directly in the cellular context. Purified active prostasin also does not cleave purified EGFR. Hepsin cleavage of EGFR is not dependent on receptor tyrosine phosphorylation, while the hepsin-cleaved EGFR is phosphorylated at Tyr1068 and no longer responsive to EGF stimulation. The cleavage of EGFR by hepsin does not result in increased phosphorylation of the downstream extracellular signal-regulated kinases (Erk1/2), an event inducible by the matriptase–prostasin cleavage of EGFR. The role of hepsin serine protease should be considered in future studies of epithelial biology concerning matriptase, prostasin, and EGFR.  相似文献   

13.
The activation of matriptase requires proteolytic cleavage at a canonical activation motif that converts the enzyme from a one-chain zymogen to an active, two-chain protease. In this study, matriptase bearing a mutation in its catalytic triad was unable to undergo this activational cleavage, suggesting that the activating cleavage occurs via a transactivation mechanism where interaction between matriptase zymogen molecules leads to activation of the protease. Using additional point and deletion mutants, we showed that activation of matriptase requires proteolytic processing at Gly-149 in the SEA domain of the protease, glycosylation of the first CUB domain and the serine protease domain, and intact low density lipoprotein receptor class A domains. Its cognate inhibitor, hepatocyte growth factor activator inhibitor-1, may also participate in the activation of matriptase, based on the observation that matriptase activation did not occur when the protease was co-expressed with hepatocyte growth factor activator inhibitor-1 mutated in its low density lipoprotein receptor class A domain. These results suggest that besides matriptase catalytic activity, matriptase activation requires post-translational modification of the protease, intact noncatalytic domains, and its cognate inhibitor.  相似文献   

14.
Matriptase proteolytic activity must be tightly controlled for normal placental development, epidermal function, and epithelial integrity. Although hepatocyte growth factor activator inhibitor-1 (HAI-1) represents the predominant endogenous inhibitor for matriptase and the protein molar ratio of HAI-1 to matriptase is determined to be >10 in epithelial cells and the majority of carcinoma cells, an inverse HAI-1-to-matriptase ratio is seen in some ovarian and hematopoietic cancer cells. In the current study, cells with insufficient HAI-1 are investigated for the mechanisms through which the activity of matriptase is regulated. When matriptase activation is robustly induced in these cells, activated matriptase rapidly forms two complexes of 100- and 140-kDa in addition to the canonical 120-kDa matriptase-HAI-1 complex already described. Both 100- and 140-kDa complexes contain two-chain, cleaved matriptase but are devoid of gelatinolytic activity. Further biochemical characterization shows that the 140-kDa complex is a matriptase homodimer and that the 100-kDa complexes appear to contain reversible, tight binding serine protease inhibitor(s). The formation of the 140-kDa matriptase dimer is strongly associated with matriptase activation, and its levels are inversely correlated with the ratio of HAI-1 to matriptase. Given these observations and the likelihood that autoactivation requires the interaction of two matriptase molecules, it seems plausible that this activated matriptase homodimer may represent a matriptase autoactivation intermediate and that its accumulation may serve as a mechanism to control matriptase activity when protease inhibitor levels are limiting. These data suggest that matriptase activity can be rapidly inhibited by HAI-1 and other HAI-1-like protease inhibitors and "locked" in an inactive autoactivation intermediate, all of which places matriptase under very tight control.  相似文献   

15.
Hepatocyte growth factor activator inhibitors (HAI)-1 and -2 are recently identified and closely related Kunitz-type transmembrane serine protease inhibitors. Whereas HAI-1 is well established as an inhibitor of the serine proteases matriptase and hepatocyte growth factor activator, the physiological targets of HAI-2 are unknown. Here we show that HAI-2 displays potent inhibitory activity toward matriptase, forms SDS-stable complexes with the serine protease, and blocks matriptase-dependent activation of its candidate physiological substrates proprostasin and cell surface-bound pro-urokinase plasminogen activator. To further explore the potential functional relationship between HAI-2 and matriptase, we generated a transgenic mouse strain with a promoterless beta-galactosidase marker gene inserted into the endogenous locus encoding HAI-2 protein and performed a global high resolution mapping of the expression of HAI-2, matriptase, and HAI-1 proteins in all adult tissues. This analysis showed striking co-localization of HAI-2 with matriptase and HAI-1 in epithelial cells of all major organ systems, thus strongly supporting a role of HAI-2 as a physiological regulator of matriptase activity, possibly acting in a redundant or partially redundant manner with HAI-1. Unlike HAI-1 and matriptase, however, HAI-2 expression was also detected in non-epithelial cells of brain and lymph nodes, suggesting that HAI-2 may also be involved in inhibition of serine proteases other than matriptase.  相似文献   

16.
Matriptase, a trypsin-like serine protease with two potential regulatory modules (low density lipoprotein receptor and complement C1r/s domains), was initially purified from T-47D breast cancer cells. Given its plasma membrane localization, extracellular matrix-degrading activity, and expression by breast cancer cells, this protease may be involved in multiple aspects of breast tumor progression, including cancer invasion. In breast cancer cells, matriptase was detected mainly as an uncomplexed form; however, low levels of matriptase were detected in complexes. In striking contrast, only the complexed matriptase was detected in human milk. The complexed matriptase has now been purified. Amino acid sequences obtained from the matriptase-associated proteins reveal that they are fragments of a Kunitz-type serine protease inhibitor that was previously reported to be an inhibitor of the hepatocyte growth factor activator. In addition, matriptase and its complexes were detected in milk-derived, SV40 T-antigen-immortalized mammary luminal epithelial cell lines, but not in human foreskin fibroblasts or in HT-1080 fibrosarcoma cells. These results suggest that the milk-derived matriptase complexes are likely to be produced by the epithelial components of the lactating mammary gland in vivo and that the activity and function of matriptase may be differentially regulated by its cognate inhibitor, comparing breast cancer with the lactating mammary gland.  相似文献   

17.
The type II transmembrane serine protease matriptase has an essential role in the integrity and function of multiple epithelial tissues. In the epidermis, matriptase activates the glycosylphosphatidylinositol (GPI) anchored membrane serine protease prostasin to initiate a proteolytic cascade that is required for the development of the stratum corneum barrier function. Accordingly, mice deficient for matriptase phenocopy mice deficient for epidermal prostasin and present with impaired corneocyte differentiation, imparied lipid matrix formation, loss of profilaggrin processing and loss of tight junction formation and function. Together, these defects lead to a compromised epidermal barrier and result in fatal dehydration during the neonatal period. Proteolytic activity of the matriptase-prostasin cascade is regulated in the epidermis via inhibition by the Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-1 (HAI-1). Importantly, targeted post-natal ablation of matriptase in mice perturbs the function of multiple adult tissues, indicating an ongoing requirement for matriptase proteolysis in the maintenance of diverse types of epithelia. Impaired matriptase proteolytic activity has been linked to human Autosomal Recessive Icthyosis with Hypotrichosis (ARIH), whereas aberrant matriptase activity has been implicated in Netherton’s Syndrome. This review will summarize information pertaining to the role of matriptase in epithelial biology and will discuss recent advancements in our understanding of how matriptase activity is regulated and the down-stream effectors of matriptase proteolysis.  相似文献   

18.
19.
Matriptase, a type 2 transmembrane serine protease, and its inhibitor hepatocyte growth factor activator inhibitor (HAI)-1 are required for normal epidermal barrier function, and matriptase activity is tightly regulated during this process. We therefore hypothesized that this protease system might be deregulated in skin disease. To test this, we examined the level and activation state of matriptase in examples of 23 human skin disorders. We first examined matriptase and HAI-1 protein distribution in normal epidermis. Matriptase was detected at high levels at cell-cell junctions in the basal layer and spinous layers but was present at minimal levels in the granular layer. HAI-1 was distributed in a similar pattern, except that high-level expression was retained in the granular layer. This pattern of expression was retained in most skin disorders. We next examined the distribution of activated matriptase. Although activated matriptase is not detected in normal epidermis, a dramatic increase is seen in keratinocytes at the site of inflammation in 16 different skin diseases. To gain further evidence that activation is associated with inflammatory stimuli, we challenged HaCaT cells with acidic pH or H(2)O(2) and observed matriptase activation. These findings suggest that inflammation-associated reactive oxygen species and tissue acidity may enhance matriptase activation in some skin diseases.  相似文献   

20.
The migration of vascular smooth muscle cells (SMCs) is a hallmark of the pathogenesis of atherosclerosis and restenosis after angioplasty. Plasma low-density lipoprotein (LDL), but not high-density lipoprotein (HDL), induced the migration of human coronary artery SMCs (CASMCs). Among bioactive lipids postulated to be present in LDL, lysophosphatidic acid (LPA) appreciably mimicked the LDL action. In fact, the LDL-induced migration was markedly inhibited by pertussis toxin, an LPA receptor antagonist Ki-16425, and a small interfering RNA (siRNA) targeted for LPA(1) receptors. Moreover, LDL contains a higher amount of LPA than HDL does. HDL markedly inhibited LPA- and platelet-derived growth factor (PDGF)-induced migration, and sphingosine 1-phosphate (S1P), the content of which is about fourfold higher in HDL than in LDL, mimicked the HDL action. The inhibitory actions of HDL and S1P were suppressed by S1P(2) receptor-specific siRNA. On the other hand, the degradation of the LPA component of LDL by monoglyceride lipase or the antagonism of LPA receptors by Ki-16425 allowed LDL to inhibit the PDGF-induced migration. The inhibitory effect of LDL was again suppressed by S1P(2) receptor-specific siRNA. In conclusion, LPA/LPA(1) receptors and S1P/S1P(2) receptors mediate the stimulatory and inhibitory migration response to LDL and HDL, respectively. The balance of not only the content of LPA and S1P in lipoproteins but also the signaling activity between LPA(1) and S1P(2) receptors in the cells may be critical in determining whether the lipoprotein is a positive or negative regulator of CASMC migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号