首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report focuses on angiotensin II AT(1) receptor autoantibodies (anti-AT(1)-AABs) in preeclamptic women. An enzyme-linked immunosorbent assay was described. Biotinylated peptide was incubated with anti-AT(1)-AABs. Streptavidin-coated magnetic particles bind the protein-autoantibody complex. Detection of anti-AT(1)-AABs was performed using anti-human IgG3 peroxidase-coupled antibody. The color reaction of tetramethylbenzidine solution was stopped by adding 0.5 M H(2)SO(4). Optical density was measured at 450 nm (620 nm reference filter). Seventy-nine percent of anti-AT(1)-AAB-positive patients (measured by bioassay) showed an increase in optical density (>145%). The same biotinylated peptide was successfully used for purification of 6/6 anti-AT(1)-AABs. Chronotropic effects of purified antibodies were registered on primary cultured neonatal rat cardiomyocytes with the computer imaging system IMAGOQUANT. Western blot of coimmunoprecipitation of angiotensin II AT(1) receptor shows one band (molecular weight >40.0 kDa) in potassium thiocyanate eluate.  相似文献   

2.
Subchronic treatment with MAP (4.6 mg/kg, i.p., once daily for 11 days) significantly decreased the Kd, but not Bmax, values of [3H]1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) binding to adenosine A1 receptors in the prefrontal cortex and hippocampus, but not striatum, of rat brain. However, subchronic treatment with PCP (10 mg/kg, i.p., once daily for 11 days) did not alter the Kd and Bmax values of [3H]DPCPX binding to adenosine A1 receptors in these three regions. Subchronic treatment with MAP or PCP did not alter the Bmax and Kd values of [3H]2-p-(2-carboxyehyl)phenethylamino-5-N-ethylcarboxyamidoadenosine ([3H]CGS21680) binding to adenosine A2A receptors in the striatum. Furthermore, subchronic treatment with MAP or PCP significantly decreased the specific binding of [3H]CGS21680 to adenosine A2A receptors in the hippocampus, but not in the prefrontal cortex. Thus, these results suggest that MAP and PCP may produce differential effects on the adenosine A2A receptors, but not adenosine A1 receptors in rat brain.  相似文献   

3.
Specific ligand binding to rat hippocampal adenosine A1 receptor after administration of the convulsant drug 3-mercaptopropionic acid (MP) was studied by means of a quantitative autoradiographic method. 2-Chloro-N6-[cyclopentyl-2,3,4,5-3H adenosine] ([3H]CCPA), a potent and selective A1 receptor ligand, was selected for binding studies. MP administration (150 mg/kg, i.p.), at seizure, caused significant increases in the following CA1 layers: pyramidal (45%), radiatum (18%) and lacunosum molecular (35%); in CA2 area, a significant decrease in stratum oriens (36%) and an increase in stratum radiatum (14%) and lacunosum molecular (33%) layers was observed. In CA3 area a rise in pyramidal (40%) and radiatum layers (26%), as well as in hillus (97%) was found. At postseizure, changes were restricted to CA1, CA2 and CA3 pyramidal layers and to CA1 lacunosum molecular layer, with increases ranging from 22 to 50%. These results show that [3H]CCPA binding is modified diversely in intrahippocampal layers and areas, thus indicating their dissimilar role in seizure activity.  相似文献   

4.
Cholecystokinin (CCK) and its receptors are expressed in mammalian cardiomyocytes and are involved in cardiovascular system regulation; however, the exact effect and underlying mechanism of CCK in cardiomyocyte apoptosis remain to be elucidated. We examined whether sulfated CCK octapeptide (CCK-8) protects H9c2 cardiomyoblast cells against angiotensin II (Ang II)-induced apoptosis. The H9c2 cardiomyoblasts were subjected to Ang II with or without CCK-8 and the viability and apoptotic rate were detected using a Cell Counting Kit-8 assay, Hoechst 33342 staining, terminal deoxyribonucleotide transferase-mediated nick-end labeling assays, and flow cytometry. In addition, specific antiapoptotic mechanisms of CCK-8 were investigated using specific CCK1 (Devazepide) or CCK2 (L365260) receptor antagonists, or the PI3K inhibitor LY294002. The expression of CCK, CCK1 receptor, CCK2 receptor, Akt, p-Akt, Bad, p-Bad, Bax, Bcl-2, and caspase-3 were detected by Western blot analysis and real-time polymerase chain reaction. We found that CCK and its receptor messenger RNA (mRNA) and protein are expressed in H9c2 cardiomyoblasts. Ang II-induced increased levels of CCK mRNA and protein expression and decreased levels of CCK1 receptor protein and mRNA. Pretreatment of CCK-8 attenuated Ang II-induced cell toxicity and apoptosis. In addition, pretreatment of H9c2 cells with CCK-8 markedly induced expression of p-Akt, p-bad, and Bcl-2 and decreased the expression levels of Bax and caspase-3. The protective effects of CCK-8 were partly abolished by Devazepide or LY294002. Our results suggest that CCK-8 protects H9c2 cardiomyoblasts from Ang II-induced apoptosis partly via activation of the CCK1 receptor and the phosphatidyqinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway.  相似文献   

5.

6-Hydroxydopamine (6-OHDA) is the most used toxin in experimental Parkinson’s disease (PD) models. 6-OHDA shows high affinity for the dopamine transporter and once inside the neuron, it accumulates and undergoes non-enzymatic auto-oxidation, promoting reactive oxygen species (ROS) formation and selective damage of catecholaminergic neurons. In this way, our group has established a 6-OHDA in vitro protocol with rat striatal slices as a rapid and effective model for screening of new drugs with protective effects against PD. We have shown that co-incubation with guanosine (GUO, 100 μM) prevented the 6-OHDA-induced damage in striatal slices. As the exact GUO mechanism of action remains unknown, the aim of this study was to investigate if adenosine A1 (A1R) and/or A2A receptors (A2AR) are involved on GUO protective effects on striatal slices. Pre-incubation with DPCPX, an A1R antagonist prevented guanosine effects on 6-OHDA-induced ROS formation and mitochondrial membrane potential depolarization, while CCPA, an A1R agonist, did not alter GUO effects. Regarding A2AR, the antagonist SCH58261 had similar protective effect as GUO in ROS formation and mitochondrial membrane potential. Additionally, SCH58261 did not affect GUO protective effects. The A2AR agonist CGS21680, although, completely blocked GUO effects. Finally, the A1R antagonist DPCPX, and the A2AR agonist CGS21680 also abolished the preventive guanosine effect on 6-OHDA-induced ATP levels decrease. These results reinforce previous evidence for a putative interaction of GUO with A1R-A2AR heteromer as its molecular target and clearly indicate a dependence on adenosine receptors modulation to GUO protective effect.

  相似文献   

6.
Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinsons and Alzheimers disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different.  相似文献   

7.
8.
To delineate the functional importance of the highly conserved triplet amino acid sequence, Asp-Arg-Tyr (DRY) among G protein-coupled receptors in the second intracellular loop, these residues of rat angiotensin II (Ang II) receptor type 1A (AT(1A)) were changed by alanine or glycine by site-directed mutagenesis. These mutant receptors were stably expressed in CHO-K1 cells, and the binding of Ang II, GTP effect, InsP(3) production, and the acidification of the medium in response to Ang II were determined. The effects of GTPgammaS on Ang II binding in the mutant receptors D125A and D125G were markedly reduced. InsP(3) production of the mutant D125A, D125G, R126A, and R126G was markedly reduced. Extracellular acidification of D125A was not distinguishable from untransfected CHO-K1 cells. Mutant Y127A was able to produce InsP(3) and acidify medium comparable with wild type AT(1A). These results indicate as follows; Asp(125) is essential for intracellular signal transduction involving G protein coupling, Arg(126) is essential for coupling of G(q) protein but not other G proteins, and Tyr(127) is not important for G protein coupling.  相似文献   

9.
The octapeptide angiotensin II mediates the physiological actions of the renin-angiotensin system through activation of several angiotensin II receptor subtypes; in particular the AT1. In many tissues, the presence of multiple angiotensin II receptor subtypes, together with a low number of receptors, makes it difficult to study biological responses to physiological concentrations (10–11–10–9 M) of angiotensin II. Also, cultured cells show diminished angiotensin II receptor binding with respect to time in culture and passage number. To address these problems, we expressed the recombinant AT1A receptor in CHO-K1 cells. The stably transfected receptor was characterized using radioligand binding studies and functional coupling to cytosolic free calcium. Radioligand binding of [125I] angiotensin II to the angiotensin II receptor was specific, saturable, reversible and modulated by guanine nucleotides. Like the endogenous AT1A receptor, reported in a variety of tissues, the specific, noncompetitive, nonpeptide AII receptor antagonist, EXP3174, blocked binding of [125I] angiotensin II to the transfected receptor. Scatchard analysis demonstrated that the transfected receptor had a dissociation constant of 1.9 nM with a density of 3.4 pmol/mg protein.An important feature of many of the responses to angiotensin II is the rapid desensitization that occurs following agonist occupancy and the development of tachyphylaxis. In AT1A receptor transfected CHO-K1 cells, angiotensin II (10–9 M) stimulated a rapid increase in cytosolic free calcium that was completely desensitized within 50 sec following receptor occupancy. Agonist induced desensitization was unaffected when receptor internalization was blocked by pretreatment with concanavalin A or incubation at 4°C, and no changes in AT1A receptor affinity or number were observed. Receptor desensitization was also unaffected by inhibition or activation of protein kinase C. Thus, we have established a permanent, high-level transfectant of the AT1A receptor in CHO-K1 cells and have shown that these receptors rapidly desensitize following exposure to physiological concentrations of agonist. The mechanism of rapid desensitization is not related to receptor sequestration, internalization or controlled by PKC phosphorylation. This provides an excellent model for studying AII actions mediated through a specific receptor subtype, at subnanomolar concentrations.  相似文献   

10.
ABSTRACT

This study aims to study the effects of adenosine A2A receptor (A2AR) on hippocampal cell apoptosis and the putative mechanisms in a mouse model of chronic hypoxic-hypercapnia. Wild-type (WT) or A2AR knockout (A2AR KO) mice were randomly divided into normal control (NC) groups and chronic hypoxic-hypercapnia (4HH) groups. Compared with their corresponding NC groups (WT-NC and KO-NC), the apoptosis index (AI), caspase-3 activity, Bax mRNA and P-p38 protein expression in the hippocampus of 4HH groups (WT-4HH and KO-4HH) were significantly increased, while Bcl2 mRNA expression was significantly decreased (P < 0.05). Moreover, A2AR deficiency significantly rescued the effect of chronic hypoxic-hypercapnia on apoptosis when compared with the WT-4HH group (P < 0.05). A2AR deficiency inhibits hippocampal cell apoptosis in mice exposed to chronic hypoxic-hypercapnia, which might be associated with dampened p38 MAPK activation and Bax mRNA expression, and augmented Bcl-2 mRNA expression.  相似文献   

11.
Rat CNS adenosine A1 receptors were studied by quantitative autoradiography after the administration of convulsant 3-mercaptopropionic acid (MP) and an adenosine analogue cyclopentyladenosine (CPA), using 2-chloro-N6-[cyclopentyl-2,3,4,5-3H adenosine]-([3H]CCPA) as radioactive ligand. Specific binding was quantified in hippocampus, cerebellum, cerebral cortex, thalamic nuclei, superior colliculus and striatum, and the highest densities were found in CA1, CA2, and CA3 hippocampus subareas and the lowest levels in superior colliculus and striatum. MP administration (150 mg/kg, i.p.) produced significant increases in [3H]CCPA binding in CA1 subarea at seizure (15%) and postseizure (21%) and in CA2 at seizure (15%) but a tendency to decrease in dentate gyrus. There was an increase in cerebellum at seizure (18%) but no significant changes in the other studied regions. CPA injection (2 mg/kg, i.p.) enhanced [3H]CCPA binding in CA1 and CA2 areas (17–18%) but not in CA3 area of the hippocampus. When CPA was administered before MP, which delayed seizure onset, an increase in [3H]CCPA binding in CA1 hippocampus subarea (19%) and cerebellum (28%) was also observed. Results showed that the administration of convulsant MP and adenosine analogue CPA exerts differential effects on adenosine A1 receptors in CNS areas; hippocampus is the most affected area with all treatments, specially CA1 subarea, supporting an essential role in convulsant activity as well as in seizure prevention.  相似文献   

12.
附睾内液体微环境对精子的成熟和贮藏是相当重要的。附睾液体的形成取决于附睾上皮的吸收与分泌功能,而先前的实验已经证明:这些吸收与分泌的活动是受到除神经激素以外旁分泌与自分泌的调控。虽然肾素血管紧张素系统(RAS)在很多组织上旁分泌与自分泌的作用已多有报导,但其在附睾的存在及作用仍鲜为人知。本综述总结了本实验室在这方面的研究结果,通过使用不同的实验方法,例如,免疫组织化学,放射免疫分析,分子生物学及短路电流电生理学方法,我们得到的结果显示了RAS主要成员在附睾的分布(Fig.1)和表达,并阐明了血管紧张素II对附睾阴离子分泌的调控作用(Figs.2&3)。本综述还就血管紧张素II对附睾旁分泌与自分泌的作用及其机制(Fig.4),以及对精子功能的作用进行了讨论。  相似文献   

13.
It has been observed that a cytokine synthesis inhibitor, pentoxifylline, prevents the apoptotic processes taking place in the amygdala following myocardial infarction. However, it is unknown if the cardioprotective effect of A2A adenosine receptor agonist, CGS21680, which reduces cytokine synthesis, would lead to such amygdala apoptosis regression. Thus, this study was designed to investigate whether cardioprotective A2A adenosine receptor activation reduces apoptosis in the amygdala following myocardial infarction. Anesthetized rats were subjected to left anterior descending coronary artery occlusion for 40 min, followed by 72 h of reperfusion. The A2A agonist CGS21680 (0.2 μg/kg/min i.v.) was administered continuously for 120 min, starting (1) five minutes prior to instituting reperfusion (Early) or (2) five minutes after the beginning of reperfusion (Late). After reperfusion, myocardial infarct size was determined and the amygdala was dissected from the brain. Infarct size was reduced significantly in the Early compared to the Control group (34.6 ± 1.8% and 52.3 ± 2.8% respectively; p < 0.05), with no difference com-pared to the Late group (40.1 ± 6.1%). Apoptosis regressi-on was documented in the amygdala of the Early group by an enhanced phosphatidylinositol 3-kinase-Akt pathway activation and Bcl-2 expression concurrently to a caspase-3 activation limitation and reduction in TUNEL-positive cells staining. On the other hand, amygdala TUNEL-positive cell numbers were not reduced in the Late group. Moreover, TNFα was significantly reduced in the amygdala of the Early group compared to the Control and Late groups. These results indicate that A2A adenosine receptor stimulation is associated with apoptosis regression in the amygdala following myocardial infarction. This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC).  相似文献   

14.
15.
Beta cell loss occurs at the onset of type 1 diabetes and after islet graft. It results from the dysfunction and destruction of beta cells mainly achieved by apoptosis. One of the mediators believed to be involved in beta cell apoptosis is Fas, a transmembrane cell surface receptor transducing an apoptotic death signal and contributing to the pathogenesis of several autoimmune diseases. Fas expression is particularly induced in beta cells by inflammatory cytokines secreted by islet-infiltrating mononuclear cells and makes cells susceptible to apoptosis by interaction with Fas-ligand expressing cells. We have previously demonstrated that 1,25 (OH)2 D3, the active metabolite of vitamin D, known to exhibit immunomodulatory properties and prevent the development of type 1 diabetes in NOD mice, is efficient against apoptosis induced by cytokines in human pancreatic islets in vitro. The effects were mainly mediated by the inactivation of NF-kappa-B. In this study we demonstrated that 1,25 (OH)2 D3 was also able to counteract cytokine-induced Fas expression in human islets both at the mRNA and protein levels. These results were reinforced by our microarray analysis highlighting the beneficial effects of 1,25 (OH)2 D3 on death signals induced by Fas activation. Our results provides additional evidence that 1,25 (OH)2 D3 may be an interesting tool to help prevent the onset of type 1 diabetes and improve islet graft survival.  相似文献   

16.
Neuronal cells from Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rat brains were established in culture to compare the expression of angiotensin II (Ang II) specific receptors and their regulation by norepinephrine (NE). Neurons from SH rat brains possess twice more Ang II specific receptors and expressed a proportional increase in Ang II stimulated [3H]-NE uptake compared with WKY neurons. NE caused a dose-dependent decrease in125I-Ang II binding in WKY neurons, an effect not observed when neurons from SH rat brains were incubated with NE. These observations suggest that the lack of NE-induced downregulation of Ang II receptors in neuronal cultures is genetically regulated.  相似文献   

17.
A series of 2-amino-4,5,6,7,8,9-hexahydrocycloocta[b]thiophenes were prepared and evaluated as potential allosteric modulators of the A1 adenosine receptor (AR). The structure-activity relationships of the 3-position were explored along with varying the size of the cycloalkyl ring. 2-Aminothiophenes with amide and hydrazide groups in the 3-position were completely inactive in an A1-AR-mediated ERK1/2 phosphorylation assay, yet most of the 3-benzoyl substituted compounds exhibited allosteric effects on responses mediated by the orthosteric agonist, R-PIA. Despite finding an increase in both agonistic and allosteric activities by going from a cyclopentyl ring to a cyclohexyl ring in the 3-benzoyl series, decreases were observed when further increasing the ring size. Varying the substituents on the phenyl ring of the 3-benzoyl group also affected the activity of these compounds.  相似文献   

18.
The affinity profiles for the bovine adenosine receptors, A1 and A2A, of a series of 1,8-naphthyridine derivatives were quantitatively analyzed using physicochemical and structural parameters of the substituents, present at varying positions of the molecules. The derived significant correlation, for bovine A1 receptor, suggested that a R1 substituent having a higher van der Waals volume, a R2 substituent being a hydrogen-bond donor and a R3 substituent able to transmit a higher field effect are helpful in augmenting the pKi of a compound. Similarly the study, pertaining to bovine A2A receptor, revealed that a less bulky substituent at R2 and a strong electron-withdrawing substituent at R3 are desirable in improving the binding affinity of a compound while substituents at R1 remain insignificant to any interaction.  相似文献   

19.
When cardiomyocytes were subjected to hypoxia, tumor necrosis factor-α (TNF-α; 3-50 ng/ml) or adenosine (1-100 μM), decreased hypoxic damage as was detected by lactate dehydrogenase (LDH) release, MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) absorbance, ROS (reactive oxygen species) measurement or desmin immunostaining. This cardioprotection was not prevented in TNF-α-treated cultures by 5-hydroxydecanoic acid (5-HD). Our aim was to elucidate whether adenosine and TNF-α mediate a similar protective mechanism against hypoxia in primary heart cultures and in H9c2 cardiomyocytes. Adenosine and TNF-α are known for their negative inotropic effects on the heart. We have suggested that deoxyglucose uptake reflects heart contractility in cell cultures; therefore, we assayed its accumulation under various conditions. Treatment for 20 min with adenosine, R-PIA [(−)-N(6)-phenylisopropyladenosine] (10 μM), or TNF-α reduced 3H-deoxyglucose uptake in primary heart cultures and also in H9c2 cardiomyocytes by 30-50%. Isoproterenol accelerated 3H-deoxyglucose uptake by 50%. Adenosine, R-PIA, or TNF-α attenuated the stimulatory effect of isoproterenol on 3H-deoxyglucose uptake to control levels. Hypoxia reduced 3H-deoxyglucose uptake by 50%, as in the treatment of the hypoxic cultures with TNF-α or adenosine. Glibenclamide (2 μM), 5-HD (300 μM), or diazoxide (50 μM) increased 3H-deoxyglucose uptake by 50-80%. Adenosine (100 μM) and TNF-α (50 ng/ml) stimulated 86Rb efflux. Glibenclamide attenuated this effect. We demonstrate that TNF-α, like adenosine, accelerated Ca2+ uptake into the sarcoplasmic reticulum (SR) by 50-100% and therefore prevented cardiomyocyte Ca2+ overload. Our findings further suggest that TNF-α, as well as adenosine, may mediate an adaptive effect in the heart by preventing Ca2+ overload via activation of SR Ca-ATPase (SERCA2a).  相似文献   

20.
Downstream A3 receptor signalling plays an important role in the regulation of cell death and proliferation. Therefore, it is important to determine the molecular pathways involved through A3 receptor stimulation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. The crosstalk between these two pathways has also been investigated. The focus of this review centres on downstream mediators of A3 adenosine receptor signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号