首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method has been used to determine what fraction of human erythrocyte cholesterol is available for exchange with plasma unesterified cholesterol. Erythrocytes labeled with 3H-cholesterol by this exchange process were incubated with sonicated phosphatidylcholine vesicles, giving rise to a net movement of cholesterol out of the cells. The specific activity of cholesterol taken up by the vesicles depended on the length of time of incubation. Initially the specific activity in the vesicles was greater than that in the cells, but after approximately 10% of cell cholesterol had been removed, the specific activity of subsequently removed cholesterol was equal to that of the remaining erythrocyte cholesterol. We conclude from these data that (a) all of the cholesterol in the erythrocyte is exchangeable with plasma, and (b) approximately 10% of erythrocyte cholesterol is in a more rapidly exchangeable pool than the remainder.  相似文献   

2.
Human erythrocyte membranes were enriched or depleted of cholesterol and effects on membrane proteins assessed with a membrane-impermeant sulfhydryl reagent, [35S]glutathione-maleimide. Reaction of the probe with intact cells quantifies exofacial sulfhydryl groups and reaction with leaky ghost membranes permits quantification of endofacial sulfhydryl groups. The mean endofacial sulfhydryl titer of cholesterol-enriched membranes exceeded that of cholesterol-depleted membrane by approximately 45 nmol/mg of protein or 64%. The corresponding exofacial titer of cholesterol-enriched cells was less than that of cholesterol-depleted cells by approximately 0.4 nmol/mg of protein, or 14%. Labeled membranes were examined by autoradiography of sodium dodecyl sulfate-polyacrylamide gel electropherograms to determine the labeling patterns of individual protein bands. Cholesterol enrichment enhanced the surface labeling of Coomassie brilliant blue stained bands 1,2,3, and 5, decreased the labeling of band 6, and did not change significantly that of band 4. The results demonstrate that changes in membrane cholesterol which influence lipid fluidity can alter the surface labeling of both intrinsic and extrinsic membrane proteins.  相似文献   

3.
Transbilayer movement of cholesterol in the human erythrocyte membrane   总被引:3,自引:0,他引:3  
The rate of transbilayer movement of cholesterol was measured in intact human erythrocytes. Suspended erythrocytes were incubated briefly with [3H]cholesterol in ethanol at 4 degrees C, or with liposomes containing [3H]cholesterol over 6 hr at 4 degrees C to incorporate the tracer into the outer leaflet of erythrocyte plasma membranes. The erythrocytes were then incubated at 37 degrees C to allow diffusion of cholesterol across the membrane bilayer. Cells were treated briefly with cholesterol oxidase to convert a portion of the outer leaflet cholesterol to cholestenone, and the specific radioactivity of cholestenone was determined over the time of tracer equilibration. The decrease in specific radioactivity of cholestenone reflected transbilayer movement of [3H]cholesterol. The transbilayer movement of cholesterol had a mean half-time of 50 min at 37 degrees C in cells labeled with [3H]cholesterol in ethanol, and 130 min at 37 degrees C in cells labeled with [3H]cholesterol exchanged from liposomes. The cells were shown, by the absence of hemolysis, to remain intact throughout the assay. The presence of 1 mM Mg2+ in the assay buffer was essential to prevent hemolysis of cells treated with cholesterol oxidase perturbed the cells, resulting in an accelerated rate of apparent transbilayer movement. Our data are also consistent with an asymmetric distribution of cholesterol in erythrocyte membranes, with the majority of cholesterol in the inner leaflet.  相似文献   

4.
Cholesterol oxidase (EC 1.1.3.6, Brevibacterium sp.), which catalyzes the reaction: cholesterol + O2Δ4-cholestenone + H2O2, has no effect on the cholesterol of intact (human) erythrocytes and of “resealed” ghosts, when it is present only outside these ghosts. The cholesterol of “leaky” ghosts, of “resealed” ghosts with enzyme trapped within, and of “inside-out” vesicles, was completely oxidized. This pattern indicates that the inner (cytoplasmic) membrane surface must be exposed to the enzyme for the reaction to occur, and that outer surface cholesterol only becomes reactive after the membrane has been degraded by the oxidation of inner surface cholesterol. The enzymatic oxidations followed monotonic first-order kinetics, and hence gave no evidence to support the two states of cholesterol in the membrane that had been postulated earlier from studies on the plasma lipoprotein extraction of cholesterol from the membrane.  相似文献   

5.
The effects of temperature and cholesterol on the membrane fluidity of human erythrocytes were studied using 5-nitroxide stearic acid (5NS), 12-nitroxide stearic acid (12NS), and 16-nitroxide stearic acid (16NS). Human erythrocytes and their lipid vesicles were treated in the range of 5--55 degrees C. In erythrocytes, ESR signals for 12NS and 16NS showed line broadening above 40 degrees C, whereas those for 5NS became sharper with increasing temperature as was the case with the signals of lipid vesicles for each label molecule. Lipid extraction from the heated sample caused no radical reduction. Only in 12NS-labeled erythrocytes did a weakly immobilized component and a strongly immobilized component appear. In the time course at 50 degrees C, the former decreased and the latter remained constant. From the ratio of both components, it was found that the interaction of the label molecules with the binding sites was determined by the physical state of the membrane. Furthermore, the dependence on temperature of the molecular motion of the labels in the cell membrane was irreversible above 40 degrees C. On addition of cholesterol to the membrane, the outer hyperfine splittings for 12NS and 16NS increased but that for 5NS decreased at C/P greater than 1, perhaps indicating a spread between the head groups of phospholipids by cholesterol.  相似文献   

6.
The recombinates from human red cell membrane proteins and lipids resulting from dialysis of the components in 2-chloroethanol against aqueous buffers from pH2-12 have been studied by density gradient centrifugation, polyacrylamide gel electrophoresis and freeze-fracture electron microscopy. Between pH 4 and 10 most of the proteins were found in the recombinates whereas below pH 4 and above pH 10 only part of them were recovered in the lipoprotein band after density gradient centrifugation. At low pH, increasing incorporation of the "major glycoprotein" into the recombinates was detected by gel electrophoresis and in parallel increasing amounts of particles were found in the freeze-fracture membrane faces. The necessity of working at low pH values from pH 2-4, however, and a critical evaluation of all the data presently available leads to the conclusion that the 2-choloroethanol technique is not adequate for recombination studies tending to membrane reconsitution.  相似文献   

7.
The effect of cholesterol depletion on the activity of phosphatidylinositol/phosphatidylinositol 4-phosphate and diacylglycerol kinases and polyphosphoinositide phosphodiesterase has been studied in isolated membranes of human normal and cholesterol-depleted erythrocytes. Polyphosphoinositide synthesis (phosphatidylinositol/phosphatidylinositol 4-phosphate kinase activities) were found to depend on the permeability and sidedness characteristics of the membrane vesicles, which could limit the accessibility of ATP for the enzymes. When measured under proper conditions, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate synthesis were decreased in cholesterol-depleted membranes as compared with control membranes. The same level of synthesis could be obtained in both membranes by the addition of phosphatidylinositol (and Triton X-100) or of phosphatidylinositol 4-phosphate. Phosphatidic acid synthesis (diacylglycerol kinase activity) was also decreased in cholesterol-depleted membranes as compared with control membranes when measured in the presence of Ca2+. Addition of diolein (and Triton X-100) caused a large increase in phosphatidic acid synthesis which reached approximately the same level in both membranes. This showed that the apparent inhibition of polyphosphoinositide and phosphatidic acid synthesis was not due to a loss or to an inactivation of the kinases. Ca2+-activated polyphosphoinositide phosphodiesterase promoted the hydrolysis of 65-70% of the polyphosphoinositides in control and of only 45-55% in cholesterol-depleted membranes without changing the Ca2+ concentration for half-maximum hydrolysis (1 microM). Upon addition of sodium oleate, the extent of polyphosphoinositide hydrolysis became identical in both membranes, indicating again that there was no loss nor inactivation of the polyphosphoinositide phosphodiesterase in the cholesterol-depleted membranes. Since the concentration of the polyphosphoinositides was not changed by cholesterol depletion [Giraud, M'Zali, Chailley & Mazet (1984) Biochim. Biophys. Acta 778, 191-200], the reduction in both their synthesis and degradation observed here could be attributed to a reorganization of the phosphoinositides in membrane domains where they were not accessible to the kinases and phosphodiesterase. The reduction in phosphatidic acid synthesis was likely caused by a reduction in the total amount of the substrate diacylglycerol in cholesterol-depleted membranes as already shown [Giraud, M'Zali, Chailley & Mazet (1984) Biochim. Biophys. Acta 778, 191-200].  相似文献   

8.
In order to define the influence of skeletal protein organization on transmembrane phospholipid movement in erythrocyte membranes, we measured the translocation rate of lysophosphatidylcholine in pathologic red cells. A simple method based on the differential extraction of lysophosphatidylcholine from the red cell membrane by saline and albumin solutions was used to quantitate the translocation rate. Two groups of pathologic red cells were chosen for these studies: red cells with quantitative deficiencies of the skeletal proteins, spectrin and protein 4.1, and sickle erythrocytes in which controlled reorganization of the membrane was induced by hemoglobin polymerization. Marked increase in lipid translocation rate was seen in red cells having quantitative deficiencies of spectrin and protein 4.1. The magnitude of the increase in translocation rate in spectrin-deficient red cells was related to the magnitude of protein deficiency. Translocation rate in sickle erythrocyte membranes increased by 50% upon deoxygenation as a result of sickle hemoglobin polymerization. No increase in translocation rate was seen in normal cells upon deoxygenation. By manipulating the extent of membrane reorganization that occurred following deoxygenation of sickle cells, we have been able to show that skeletal reorganization induced by hemoglobin polymerization and not hemoglobin polymerization per se is responsible for the increase in translocation rate. Together, these findings imply that the structural organization of membrane skeletal proteins plays an important role in regulating the rate of transbilayer movement of lipids across the erythrocyte membrane.  相似文献   

9.
Peroxidation-induced perturbations of erythrocyte lipid organization   总被引:2,自引:0,他引:2  
Peroxidation of erythrocyte membrane lipids by hydrogen peroxide perturbs the lipid bilayer and increases phagocytosis by macrophages. This study addresses the underlying mechanism of these processes, and in particular the role of malondialdehyde, a major byproduct of lipid peroxidation. When erythrocytes were treated with hydrogen peroxide or ascorbate/iron to generate malondialdehyde, or with malondialdehyde itself, only those cells treated with hydrogen peroxide showed increased phospholipid spacing and enhanced phagocytosis. This result indicates that the alterations observed are unique to hydrogen peroxide treatment, and that malondialdehyde does not play a role in inducing these changes in surface properties. Comparison of adherence to human umbilical vein endothelial cells and phagocytosis showed that increased phagocytosis was not mirrored by enhanced adherence. This result suggests that two different signals may mediate recognition of erythrocytes by macrophages and by endothelial cells.  相似文献   

10.
11.
The effect of cholesterol on the membrane fluidity of human erythrocytes has been studied by electron spin resonance (ESR) spectroscopy, sensing the motion of androstane and fatty acid spin labeles in the cell membrane and in vesicles made from extracted phospholipids. 1. Androstane spin label (ASL) was incorporated from ASL-containing phospholipid vesicles into the erythrocyte membrane, essentially by a partition mechanism in proportion to their phospholipid contents. 2. On increasing the cholesterol or ASl content in the cell membrane, the spin label was gradually immobilized. 3. ASL motion in the cell membrane seemed to be primarily determined by the cholesterol/phospholipid molar ratio, regardless of the membrane protein-lipid interaction, as judged from the temperature effects on the ESR spectra of both membranes. 4. However, glutaraldehyde pretreatment induced considerable changes of the cholesterol-lipid interaction in the cell membrane, i.e., strong immobilization and cluster formation of ASL were observed.  相似文献   

12.
We have used a spin label analog of cholesterol bearing a nitroxide on the alkyl chain (26-nor-25-doxylcholestanol) to study cholesterol-protein interactions in the human erythrocyte membrane. As judged from the ESR spectrum, the spin label is readily incorporated into the membrane when added from a concentrated ethanolic solution to a cell or ghost suspension. With intact erythrocytes or white ghosts in isotonic buffer, the ESR spectrum is a superposition of a mobile component and a strongly immobilized component (outer hyperfine splitting 61–63 G). The latter corresponds to approx. 45% of the signal, a percentage which is barely affected by varying the temperature between 5 and 37°C. Removal of the cytoskeletal proteins spectrin and actin by low ionic strength treatment or of all extrinsic proteins by alkali treatment of ghosts reduces the immobilized fraction to approx. 25%. The effect of controlled proteolysis of intrinsic proteins was also tested. Pre-treatment of cells with chymotrypsin or pre-treatment of unsealed ghosts with trypsin has no effect on the ESR spectrum obtained with alkali-treated membranes. On the other hand, after chymotrypsin treatment of unsealed ghost, which reduces the band 3 protein to a 17.5 kDa membrane fragment, the strongly immobilized component is no longer observable. These data show that the cholesterol analog 26-nor-25-doxylcholestanol interacts strongly with one or several proteins of the erythrocyte membrane. That the intrinsic protein band 3 is involved is suggested by the disappearance of the immobilized fraction occurring upon chymotrypsin digestion of this protein. Our results are thus consistent with the proposal of a selective cholesterol-band 3 interaction in the erythrocyte membrane (Schubert, D. and Boss, K. (1982) FEBS Lett. 150, 4–8). Our data also suggest that this interaction is influenced by cytoskeletal proteins, an effect which can be explained considering the known linking of band 3 to the erythrocyte cytoskeleton via ankyrin. Experiments have also been carried out with 3-doxylandrostanol, a more commonly used cholesterol spin-label analog. With this spin label, at all temperatures investigated, we found it impossible to demonstrate unambiguously the existence of two separate spectral components. It is suggested that 26-nor-25-doxylcholestanol is a better reporter of cholesterol behavior in membranes.  相似文献   

13.
The enzyme lactoperoxidase was used to catalyse the radioiodination of membrane proteins in intact human erythrocytes and in erythrocyte `ghosts'. Two major proteins of the erythrocyte membrane were isolated after iodination of these two preparations, and the peptide `maps' of each protein so labelled were compared. Peptides from both proteins are labelled in the intact cell. In addition, further mobile peptides derived from one of the proteins are labelled only in the `ghost' preparation. Various sealed `ghost' preparations were also iodinated, lactoperoxidase being present only at either the cytoplasmic or extra-cellular surface of the membrane. The peptide `maps' of protein E (the major membrane protein) labelled in each case were compared. Two discrete sets of labelled peptides were consistently found. One group is obtained when lactoperoxidase is present at the extra-cellular surface and the other group is found when the enzyme is accessible only to the cytoplasmic surface of the membrane. The results support the assumption that the organization of protein E in the membrane of the intact erythrocyte is unaltered on making erythrocyte `ghosts'. They also confirm previous suggestions that both the sialoglycoprotein and protein E extend through the human erythrocyte membrane.  相似文献   

14.
Erythrocyte membrane fluidity was evaluated in chronic alcoholic patients without any liver alteration, assuming different daily ethanol amounts, and in normal subjects and related to ghost fatty acid and total lipid composition obtained by high resolution gas chromatography. Erythrocyte membrane fluidity was significantly increased in a dose dependent manner in chronic alcoholic patients respect to normal subjects. This real fluidizing effect of ethanol "in vivo" was attributed mainly to a significant increase in the polyunsaturated fatty acids amount in patient ghosts in comparison with control subjects. On the other hand the cholesterol/phospholipid ratio was not significantly affected by chronic ethanol assumption.  相似文献   

15.
We have synthesized spin-labeled analogues of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine with a short beta chain (C5) bearing a doxyl group at the fourth position. When added to an erythrocyte suspension, the labels immediately incorporate in the membrane. The orientation of the spin-labels was assessed in the bilayer (i) by addition in the medium of a nonpermeant reducer (ascorbate at 5 degrees C) or (ii) by following spontaneous reduction at 37 degrees C due to the endogenous reducing agents present in the cytosol. Both techniques prove that the spin-labels are originally incorporated in the outer leaflet and redistribute differently after incubation. After a 5-h incubation at 5 degrees C, the phosphatidylcholine derivative remained in the outer layer, while the phosphatidylethanolamine and phosphatidylserine derivatives were found principally in the inner leaflet. During the incubation, a small fraction of the spin-labels is hydrolyzed, particularly the phosphatidylserine derivative, presumably by an endogenous phospholipase A2. Because the hydrolyzed spin-labeled fatty acids are rejected in the aqueous phase, the spectra of the intact membrane-bound phospholipids can be obtained by an adequate spectral subtraction. The ESR spectrum corresponding to a probe in the outer leaflet indicates a more restricted motion than that associated with probes in the inner leaflet. Additional experiments have been carried out to prove that the difference in viscosity, which is likely to be due to anisotropic cholesterol distribution, is not attributable to modification of the cell morphology.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Lipid organization in erythrocyte membrane microvesicles.   总被引:1,自引:0,他引:1       下载免费PDF全文
The aminophospholipids of microvesicles released from human erythrocytes on storage or prepared from erythrocyte ghosts by shearing under pressure are susceptible to the action of 2,4,6-trinitrobenzenesulphonic acid. The aminophospholipids of the former vesicles are also susceptible to attack by phospholipase A2. Under the same conditions, the aminophospholipids of erythrocytes undergo little reaction. This suggests that the phospholipids in microvesicle membranes are more randomly distributed than those in erythrocyte membranes. Measurements have also been made of the ability of filipin to react with the cholesterol of sealed and unsealed erythrocyte ghosts and of microvesicles prepared from them. From the initial rates of reaction, it was concluded that there is no preferential transfer of cholesterol molecules from one side of the bilayer to the other during the formation of the microvesicles.  相似文献   

17.
Alteration of Rho(D)-antigen expression in Rh-positive erythrocytes after modification of membrane fluidity has recently been demonstrated by indirect fluorescence staining. The isolation of D-antigen from Rh-negative erythrocyte membranes has also recently been claimed. We therefore attempted quantification of D-antigen sites in modified Rh-positive and Rh-negative cells by the direct radiolabelled (125I) antibody uptake technique. The cholesterol/phospholipid molar ratio of erythrocytes was modified with resulting membrane-cholesterol enrichment or depletion. 125I-anti-D uptake doubled in enriched Rh-positive erythrocytes, and was decreased in depleted Rh-positive erythrocytes. No change in anti-D uptake could be shown for Rh-negative erythrocytes similarly modified. If the mechanism for enhanced D-antigen expression in cholesterol enriched erythrocytes is vertical displacement of antigen, our inability to unmask the D-antigen in Rh-negative erythrocytes suggests that it is deeply buried in the lipid matrix.  相似文献   

18.
A model is presented to simulate transverse lipid movement in the human erythrocyte membrane. The model is based on a system of differential equations describing the time-dependence of phospholipid redistribution and the steady state distribution between the inner and outer membrane monolayer. It takes into account several mechanisms of translocation: (i) ATP-dependent transport via the aminophospholipid translocase; (ii) protein-mediated facilitated and (iii) carrier independent transbilayer diffusion. A reasonable modelling of the known lipid asymmetry could only be achieved by introducing mechanism (iii). We have called this pathway the compensatory flux, which is proportional to the gradient of phospholipids between both membrane leaflets. Using realistic model parameters, the model allows the calculation of the transbilayer motion and distribution of endogenous phospholipids of the human erythrocyte membrane for several biologically relevant conditions. Moreover, the model can also be applied to experiments usually performed to assess phospholipid redistribution in biological membranes. Thus, it is possible to simulate transbilayer motion of exogenously added phospholipid analogues in erythrocyte membranes. Those experiments have been carried out here in parallel using spin labeled lipid analogues. The general application of this model to other membrane systems is outlined.Abbreviations PBS phosphate buffered saline - DFP diisopropyl fluorophosphate - ESR electron spin resonance - RBC red blood cells - PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - SM sphingomyelin - (0,2)PC 1-palmitoyl-2(4doxylpentanoyl)-PC - (0,2)PE 1-palmitoyl-2(4-doxylpentanoyl)-PE - (0,2) PS 1-palmitoyl-2(4-doxylpentanoyl)-PS  相似文献   

19.
The efflux of [3H]cholesterol from prelabelled human erythrocytes having modified phosphatidylcholine compositions was measured during 24-h incubations in the presence of unlabelled acceptor liposomes composed of equimolar amounts of egg phosphatidylcholine and cholesterol. The cells were modified by replacement of part of the native phosphatidylcholine with either dipalmitoylphosphatidylcholine, palmitoyloleoylphosphatidylcholine or dilinoleoylphosphatidylcholine catalyzed by phosphatidylcholine-specific transfer protein from bovine liver. The results indicated that the efflux of [3H]cholesterol was faster from erythrocytes in which the dipalmitoylphosphatidylcholine content was increased from 7 to 25% of the total, than from cells enriched in palmitoyloleoylphosphatidylcholine or dioleoylphosphatidylcholine. Incorporation of dilinoleoylphosphatidylcholine to a level of 13% of the total phosphatidylcholine slowed the rate of efflux of [3H]sterol. The phosphatidylcholine replacements produced no significant differences in cholesterol/phospholipid ratio before or after 24 h of incubation with the acceptor egg phosphatidylcholine-cholesterol vesicles. Using vesicles prepared from erythrocyte lipid, modified to reflect the changes in the phosphatidylcholine composition induced in the whole cells, the same influence of composition on the rate of cholesterol exchange was evident. Enhancement of the dipalmitoylphosphatidylcholine content from 7 to 25% of the total phosphatidylcholine pool increased the rate of [3H]cholesterol efflux, while the addition of the same amount of dilinoleoylphosphatidylcholine slowed it compared to controls. The magnitude of the effect was comparable in intact cells and erythrocyte lipid vesicles enriched in dipalmitoylphosphatidylcholine, while the influence of dilinoleoylphosphatidylcholine was more marked in the intact cells. These results demonstrate that changes in the molecular species composition of the phosphatidylcholine pool can influence the rate of exchange of cholesterol but not necessarily the cellular content of sterol in the human erythrocyte. The influence of this phospholipid appears to be expressed independently of the presence of membrane protein or an underlying cytoskeleton.  相似文献   

20.
The partial removal of cholesterol from the human erythrocyte membrane, by contact with lecithin sols, had mixed effects on the transport of d-glucose. When about 8% of the cholesterol was removed, the rate of d-glucose transfer was increased, but as cholesterol was progressively further removed, the transport was inhibited. Replacement of the depleted cholesterol by 3-ketosteroids did not restore the transport activity; but with substitution of steroids containing only a 3β-hydroxy substituent, the rate of glucose transport returned to normal. In some instances, as little as a 2% replacement of the removed cholesterol by 3β-hydroxy steroids was sufficient for full restoration of d-glucose transport. Cholesterol substitution by steroids with a more planar nucleus and a more bulky side chain than cholesterol also aided in the restoration of glucose transfer. The partial removal of cholesterol had no effect on the apparent Km for d-glucose, but excessive membrane cholesterol led to a 4-fold decrease in d-glucose affinity. The extent of transport inhibition by a fixed phloretin treatment was independent of membrane steroid content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号