首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biochemical consequences of oxidation of hemoglobin (Hb) in intact human erythrocytes were studied. The incubation of washed erythrocyte with 1mM tert-butylhydroperoxide induced an increase in glutathionyl-Hb (G-Hb). The formation of G-Hb occurred linearly until 10 min in parallel with the formation of methemoglobin (metHb) after exhaustion of reduced glutathione. The results show that metHb, but not normal Hb, reacts with oxidized glutathione to form G-Hb. G-Hb was confirmed by immunoblotting with anti-glutathione antibody and the formation of G-Hb was accompanied by parallel decrease in beta-globin detected with a reversed phase HPLC. Electrophoretic studies showed time-dependent increase in membrane-associated alpha-Hb until 10 min, indicating that a part of unpaired alpha-Hb bound to the membrane. Pre-beta-globin increased despite the decrease in beta-globin and a part of the increase was independent of the decrease in beta-globin. Pre-beta-globin reacted with anti-glutathione antibody, but it differs from G-Hb in many features.  相似文献   

2.
HDL-associated paraoxonase 1 (PON1) undergoes inactivation under oxidative stress and is preserved by dietary antioxidants. PON1 cysteines can affect PON1 enzymatic activities. S-Glutathionylation, a redox regulatory mechanism characterized by the formation of a mixed disulfide between a protein thiol and oxidized glutathione (GSSG), was shown to preserve some enzymes from irreversible inactivation under pathological conditions. We questioned whether PON1 activity is regulated by S-glutathionylation. Incubation of PON1 or HDL with GSSG indeed resulted in a dose-dependent inactivation of PON1 activities, including its physiological activity to increase HDL-mediated macrophage cholesterol efflux. This PON1 inactivation was associated with the formation of a mixed disulfide bond between GSSG and PON1's cysteine residue(s), as detected by immunoblotting with anti-glutathione IgG. PON1 activity was recovered following the addition of a reducing agent, DL-Dithiothreitol (DTT), to the PON1-SSG complex. We thus conclude that HDL-associated serum PON1 can undergo S-glutathionylation under oxidative stress with a consequent reversible inactivation.  相似文献   

3.
Allelic variation in the mouse beta globin gene complex (Hbb) produces structurally different beta globins in different mouse strains. Like humans, mice with HbbS alleles produce a single beta globin with one reactive cysteine (beta Cys93). In contrast, mice with HbbD alleles produce two structurally different beta globins, each containing an additional cysteine (beta Cys13). beta Cys93 forms mixed disulfides with glutathione and plays a pivotal role in the activities of hemoglobin, glutathione, and nitric oxide. Similar roles for mouse beta Cys13 have not been described. We used capillary electrophoresis to compare reduced glutathione (GSH), glutathione disulfide (GSSG), and S-glutathionyl hemoglobin levels in erythrocytes from inbred C57BL/6J (homozygous HbbS/S) and 129S1/SvImJ (homozygous HbbD/D) mice and their homozygous and heterozygous B6129S/F2J hybrid offspring. S-glutathionyl hemoglobin was nearly undetectable in inbred or hybrid mice with only monocysteinyl beta globins (HbbS/S) but represented up to 10% of total hemoglobin in mice with polycysteinyl beta globins (HbbS/D or HbbD/D). The stepwise increase in beta globin sulfhydryl group concentration in HbbS/S, HbbS/D, and HbbD/D F2 mice was associated with increasing hemoglobin-bound glutathione and decreasing free glutathione (GSH + GSSG) concentrations. Total erythrocyte glutathione (GSH + GSSG + hemoglobin-bound) was not significantly different between groups. In vitro studies showed that beta Cys13 in mouse HbbD beta globins was more susceptible to disulfide exchange with GSSG than beta Cys93. We conclude that reactive beta globin sulfhydryl group concentration is genetically determined in mice, and that polycysteinyl beta globins markedly influence intraerythrocyte glutathione distribution between free and hemoglobin-bound compartments. Although Hbb heterozygosity and polycysteinyl beta globins are common in wild mouse populations, all common human beta globins contain only one reactive cysteine, and homozygosity is the norm. These fundamental differences in mouse and human beta globin genetics have important implications for the study of mouse biology and for the use of some mouse strains as models for humans.  相似文献   

4.
Redox-sensitive yellow fluorescent protein (rxYFP) contains a dithiol disulfide pair that is thermodynamically suitable for monitoring intracellular glutathione redox potential. Glutaredoxin 1 (Grx1p) from yeast is known to catalyze the redox equilibrium between rxYFP and glutathione, and here, we have generated a fusion of the two proteins, rxYFP-Grx1p. In comparison to isolated subunits, intramolecular transfer of reducing equivalents made the fusion protein kinetically superior in reactions with glutathione. The rate of GSSG oxidation was thus improved by a factor of 3300. The reaction with GSSG most likely takes place entirely through a glutathionylated intermediate and not through transfer of an intramolecular disulfide bond. However, during oxidation by H(2)O(2), hydroxyethyl disulfide, or cystine, the glutaredoxin domain reacted first, followed by a rate-limiting (0.13 min(-)(1)) transfer of a disulfide bond to the other domain. Thus, reactivity toward other oxidants remains low, giving almost absolute glutathione specificity. We have further studied CPYC --> CPYS variants in the active site of Grx1p and found that the single Cys variant had elevated oxidoreductase activity separately and in the fusion. This could not be ascribed to the lack of an unproductive side reaction to glutaredoxin disulfide. Instead, slower alkylation kinetics with iodoacetamide indicates a better leaving-group capability of the remaining cysteine residue, which can explain the increased activity.  相似文献   

5.
Location of the disulfide bonds connecting three polypeptide chains (alpha 3, 27kd; 2, 43kd; beta, 75kd) of C3c has been investigated by partial reduction with cysteine followed by alkylation with 14C-monoiodoacetic acid. Treatment of C3c with cysteine produced a partially reduced fragment, composed of disulfide-linked beta and alpha 3 chains. A single thiol residue was detected on the alpha 3 chain but not on the beta chain of the fragment, suggesting that the alpha 2 chain in C3c is linked through a single disulfide bond to the alpha 3 chain but not to the beta chain.  相似文献   

6.
Essex DW  Li M 《Biochemistry》2003,42(1):129-136
Sulfhydryl and disulfide metabolism in platelet function has recently reemerged as a focus of platelet research. In this study we tested the effect of redox buffer on platelet aggregation and the effect of reduced glutathione (GSH) and platelet activation on sulfhydryl exposure in the platelet fibrinogen receptor, alpha IIb beta 3. In the presence of subthreshold concentrations of agonist, physiologic concentrations of GSH (10 microM) stimulated platelet aggregation and secretion. These effects were found with more than one platelet agonist and with different low molecular weight thiols, including homocysteine. The effect of low molecular weight thiols was reproduced with the peptide LSARLAF which directly activates platelets through alpha IIb beta 3, suggesting that the mechanism is at the level of this integrin. After determining optimal sulfhydryl labeling conditions for alpha IIb beta 3 (5 mM EDTA, 37 degrees C, 60 min), we found that GSH (10 microM) generated sulfhydryls in the beta 3 subunit. To determine if the requirement was for reducing equivalents or for a redox potential (ratio of GSH to GSSG), aggregation was further studied with the addition of low concentrations of GSSG to the GSH. With a ratio of GSH/GSSG of 5/1, similar to that of blood, the addition of GSSG potentiated the stimulatory effect as compared to GSH alone. This indicates that, for potentiation of aggregation, GSH is not simply reducing disulfide bonds; there is rather a requirement for a certain redox potential. Additional studies performed in the absence of added glutathione showed an increase in sulfhydryl labeling in the beta 3 subunit during platelet activation. Finally, we show that vicinal dithiols of platelet surface proteins are involved in the sulfhydryl-dependent pathways of platelet activation. In summary, these data imply that the redox potential of blood regulates activation of the alpha IIb beta 3 integrin and together with other reports in the literature suggest that disulfide bond cleavage with sulfhydryl generation in beta 3 is involved in activation of this receptor.  相似文献   

7.
The mechanisms of formation of S-nitrosothiols under physiological conditions and, in particular, of generation of SNO-Hb (the hemoglobin form in which the cysteine residues beta93 are S-nitrosated) are still not completely understood. In this paper, we investigated whether, in the presence of O2, NO* is more efficient to nitrosate protein-bound thiols such as Cysbeta93 or low molecular weight thiols such as glutathione. Our results show that when substoichiometric amounts of NO* are mixed slowly with the protein solution, NO*, O2, and possibly NO2* and/or N2O3 accumulate in hydrophobic pockets of hemoglobin. Since the environment of the cysteine residue beta93 is rather hydrophobic, these conditions facilitate SNO-Hb production. Moreover, we show that S-nitrosation mediated by reaction of NO* with the iron(III) forms of Hb or Mb is significantly more effective when it can take place intramolecularly, as in metHb. Intermolecular reactions lead to lower S-nitrosothiol yields because of the concurring hydrolysis to nitrite.  相似文献   

8.
Beld J  Woycechowsky KJ  Hilvert D 《Biochemistry》2007,46(18):5382-5390
Diselenide bonds are intrinsically more stable than disulfide bonds. To examine how this stability difference affects reactivity, we synthesized selenoglutathione (GSeSeG), an analogue of the oxidized form of the tripeptide glutathione that contains a diselenide bond in place of the natural disulfide. The reduction potential of this diselenide bond was determined to be -407 +/- 9 mV, a value which is 151 mV lower than that of the disulfide bond in glutathione (GSSG). Thus, the diselenide bond of GSeSeG is 7 kcal/mol more stable than the disulfide bond of GSSG. Nonetheless, we found that GSeSeG can be used to oxidize cysteine residues in unfolded proteins, a process that is driven by the gain in protein conformational stability upon folding. Indeed, the folding of both ribonuclease A (RNase A) and bovine pancreatic trypsin inhibitor (BPTI) proceeded efficiently using GSeSeG as an oxidant, in the former case with a 2-fold rate increase relative to GSSG and in the latter case accelerating conversion of a stable folding intermediate to the native state. In addition, GSeSeG can also oxidize the common biological cofactor NADPH and is a good substrate for the NADPH-dependent enzyme glutathione reductase (kcat = 69 +/- 2 s-1, Km = 54 +/- 7 microM), suggesting that diselenides can efficiently interact with the cellular redox machinery. Surprisingly, the greater thermodynamic stability of diselenide bonds relative to disulfide bonds is not matched by a corresponding decrease in reactivity.  相似文献   

9.
1. Adult chicken hemoglobins Hb A and Hb D interact with glutathione disulfide, GSSG. The major hemoglobin, Hb A, forms at least two new components, termed GHb AI and GHb AII, and Hb D forms at least one, GHb DI. 2. At pH 8.0 and 5 degrees C, glutathione disulfide (GSSG) in a molar excess of 50 x took 6 days to complete the reaction, although at pH 8.6 and 41 degrees C only 1 hr was needed, where the hemoglobins Hb A and Hb D were converted to their most mobile forms GHb AII and GHb DI. 3. Slight molar excess (2.7 GSSG/Hb, pH 7.4, 41 degrees C), reacting for 1 hr, showed extensive formation of GHb AI and some GHb AII. 4. Electrophoretic patterns, from the reaction products of 54 GSSG/Hb excess at different times, showed a marked pH dependence. 5. Titration with pCMB (p-chloromercuribezoic acid) of DTE (dithioerythrytol)-reduced samples showed 8.0 +/- 0.4 (N = 5) -SH (sulfhydryl) per tetramer. In hemolysates not reacted with DTE, 6.0 +/- 0.4 (N = 3) -SH were detected. 6. DTE-reduced and GSSG-reacted hemoglobins showed 4.6 +/- 0.5 (N = 7) -SH and 1.5 +/- 0.4 (N = 6) -SH, respectively, as titrated by DTNB, pH 8.0. DTE-reduced hemoglobins showed four fast-reacting -SH groups, no longer present in GSSG-reacted hemoglobins. 7. Our data indicate that chicken GHb AI and GHb DI probably have two glutathionyl residues per tetramer whereas GHb AII has four.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Protein S-thiolation or protein-glutathione mixed disulfide (PSSG) occurs when cells are exposed to oxidative stress, and has been implicated in several cellular functions. The S-thiolation of hemoglobin as well as other abundant proteins is proposed to participate as a redox buffer, being part of the antioxidant protection system of the cell during the oxidative challenge. We studied the oxidative stress caused by peroxides (H(2)O(2), cumene and tert-butyl hydroperoxide) on chicken blood by measuring the thiol/disulfide status. Chicken blood under peroxide treatment showed a time- and concentration-dependent increase in glutathione disulfide (GSSG) and PSSG. GSSG peaked immediately after treatment (1 min), while PSSG increased progressively over time, showing a maximum after about 30 min. The system recovered after 140 min of incubation, with GSSG and PSSG then barely reaching control values. The S-thiolation of hemoglobin was monitored under nondenaturing PAGE, and the fraction of S-thiolated hemoglobin, or Hb A1, rose in a dose-dependent fashion and was proportional to total S-thiolation, measured as PSSG. This significant correlation indicates that hemoglobin is the major S-thiolated protein in chicken erythrocytes treated with peroxides. The present work shows the behavior of chicken blood under peroxide treatment; it anticipated that chicken hemoglobin thiol groups can actively participate in the redox processes of erythrocytes exposed to oxidative stress, and that hemoglobin is the major S-thiolated protein. This further corroborates the hypothesis that abundant proteins, such as hemoglobin, may take part in the cellular antioxidant defense system.  相似文献   

11.
The aim of the study was to examine and compare the effects of methemoglobin (metHb) and ferrylhemoglobin (ferrylHb) on the erythrocyte membrane. Kinetic studies of the decay of ferrylhemoglobin (*HbFe(IV)=O denotes ferryl derivative of hemoglobin present 5 min after initiation of the reaction of metHb with H(2)O(2); ferrylHb) showed that autoredecay of this derivative is slower than its decay in the presence of whole erythrocytes and erythrocyte membranes. It provides evidence for interactions between ferrylHb and the erythrocyte membrane. Both hemoglobin derivatives induced small changes in the structure and function of the erythrocyte membrane which were more pronounced for ferrylHb. The amount of ferrylHb bound to erythrocyte membranes increased with incubation time and, after 2 h, was twice that of membrane-bound metHb. The incubation of erythrocytes with metHb or ferrylHb did not influence osmotic fragility and did not initiate peroxidation of membrane lipids in whole erythrocytes as well as in isolated erythrocyte membranes. Membrane acetylcholinesterase activity increased by about 10% after treatment of whole erythrocytes with both metHb and ferrylHb. ESR spectra of membrane-bound maleimide spin label demonstrated minor changes in the conformation of label-binding proteins in ferrylHb-treated erythrocyte membranes. The fluidity of the membrane surface layer decreased slightly after incubation of erythrocytes and isolated erythrocyte membranes with ferrylHb and metHb. In whole erythrocytes, these changes were not stable and disappeared during longer incubation.  相似文献   

12.
S C Tyagi  S R Simon 《Biochemistry》1992,31(43):10584-10590
The major endogenous inhibitor of neutrophil elastase in the plasma, alpha 1-protease inhibitor (alpha 1-PI), has a single cysteine residue which has been shown to form mixed disulfides with a number of thiols in vitro. Under normal physiological conditions, the plasma concentrations of reduced and oxidized thiols are such that a major fraction of alpha 1-PI in the circulation in vivo is in the form of mixed disulfides [Laurell, C.-B. (1979) in The Chemistry and Physiology of Human Plasma Proteins (Bing, D. H., Ed.) pp 329-341, Pergamon, New York]. We show here that the mixed disulfide between glutathione or cysteine and alpha 1-PI (alpha 1-PI-SSG or alpha 1-PI-SScys) has an intrinsic fluorescence which distinguishes it from the reduced form of alpha 1-PI. By employing the fluorescence difference, we have measured the ratio of alpha 1-PI-SH to mixed disulfide alpha 1-PI in redox buffers of different ratios of reduced to oxidized glutathione (GSH to GSSG) or reduced to oxidized cysteine (cys to cysSScys) and have calculated an equilibrium constant and redox potential of 0.74 +/- 0.08 and 8 +/- 2 mV, respectively, for the alpha 1-PI-SH/alpha 1-PI-SSG couple and of 0.32 +/- 0.02 and 29 +/- 2 mV, respectively, for the alpha 1-PI-SH/alpha 1-PI-SScys couple. We are unable to detect any change in Trp fluorescence in the complex of alpha 1-PI and elastase when the preformed complex is added to the same GSH/GSSG or cys/cysSScys redox buffers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Line-restricted hemoglobin synthesis in chick embryonic erythrocytes   总被引:1,自引:0,他引:1  
The presence of embryonic hemoglobin in early definitive erythrocytes was checked by indirect immunofluorescence assay, using specific antibodies raised against embryonic Hb P. As positive control we used anti-Hb A which reacted with the alpha A chain shared by the minor embryonic Hb E and the adult Hb A. The assay was performed using blood smears from embryos between 6 and 15 days of incubation and yolk sac sections from embryos between 4 and 6 days. Hb P was never detected in the definitive line in circulating erythrocytes or in maturing erythroblasts still sequestered in the blood islands of the yolk sac. The expression of the 'specific' embryonic genes is thus restricted to the primitive line (as the 'specific' adult beta gene is restricted to the definitive line), and the hemoglobin switch is the result of the progressive substitution of the primitive line by the definitive one.  相似文献   

14.
M Nagai  Y Yoneyama  T Kitagawa 《Biochemistry》1989,28(6):2418-2422
Resonance Raman spectra of four hemoglobins (Hbs) M with tyrosinate ligand, that is, Hb M Saskatoon (beta distal His----Tyr), Hb M Hyde Park (beta proximal His----Tyr), Hb M Boston (alpha distal His----Tyr), and Hb M Iwate (alpha proximal His----Tyr), were investigated in order to elucidate structural origins for distinctly facile reducibility of the abnormal subunit of Hb M Saskatoon in comparison with other Hbs M. All of the Hbs M exhibited the fingerprint bands for the Fe-tyrosinate proteins around 1600, 1500, and 1270 cm-1. However, Hb M Saskatoon had the lowest Fe-tyrosinate stretching frequency and was the only one to display the Raman spectral pattern of a six-coordinate heme for the abnormal beta subunit; the others displayed the patterns of a five-coordinate heme. The absorption intensity of Hb M Saskatoon at 600 nm indicated a transition with a midpoint pH at 5.2, whereas that of Hb M Boston was independent of pH from 7.2 to 4.8. The fingerprint bands for the tyrosinate coordination as well as the Fe-tyrosinate stretching band disappeared for Hb M Saskatoon at pH 5.0, and the resultant Raman spectrum resembled that of metHb A, while those bands were clearly observed for Hb M Boston at pH 5.0 and for two Hbs M at pH 10.0. These observations suggest that the unusual characteristics of the heme in the abnormal beta chain of Hb M Saskatoon result from the weak Fe-tyrosinate bond, which allows weak coordination of the proximal histidine, giving rise to the six-coordinate high-spin state at pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
A method for simultaneous detection of picomole quantities of glutathione (GSH), glutathione disulfide (GSSG), glutathione S-sulfonate (GSSO3H), and cysteine S-sulfonate (CYSSO3H) by high-performance liquid chromatography has been developed. Compounds are separated by anion-exchange chromatography using a citric acid buffer system, and then derivatized postcolumn using o-phthalaldehyde with 2-mercaptoethanol, heated to 70 degrees C, and detected by fluorescence. The compounds elute with retention times of 12.5 min for GSH, 27.5 min for CYSSO3H, 29.8 min for GSSG, and 33.0 minutes for GSSO3H, with detection limits of 10, 200, 10, and 50 pmol, respectively. Recoveries are 103% for GSH, 102% for GSSG, 100% for CYSSO3H, and 96% for GSSO3H. Determination of target compounds in cells is described.  相似文献   

16.
Abstract

The aim of the study was to examine and compare the effects of methemoglobin (metHb) and ferrylhemoglobin (ferrylHb) on the erythrocyte membrane. Kinetic studies of the decay of ferrylhemoglobin (*HbFe(IV)=O denotes ferryl derivative of hemoglobin present 5 min after initiation of the reaction of metHb with H2O2; ferrylHb) showed that autoredecay of this derivative is slower than its decay in the presence of whole erythrocytes and erythrocyte membranes. It provides evidence for interactions between ferrylHb and the erythrocyte membrane. Both hemoglobin derivatives induced small changes in the structure and function of the erythrocyte membrane which were more pronounced for ferrylHb. The amount of ferrylHb bound to erythrocyte membranes increased with incubation time and, after 2 h, was twice that of membrane-bound metHb. The incubation of erythrocytes with metHb or ferrylHb did not influence osmotic fragility and did not initiate peroxidation of membrane lipids in whole erythrocytes as well as in isolated erythrocyte membranes. Membrane acetylcholinesterase activity increased by about 10% after treatment of whole erythrocytes with both metHb and ferrylHb. ESR spectra of membrane-bound maleimide spin label demonstrated minor changes in the conformation of label-binding proteins in ferrylHb-treated erythrocyte membranes. The fluidity of the membrane surface layer decreased slightly after incubation of erythrocytes and isolated erythrocyte membranes with ferrylHb and metHb. In whole erythrocytes, these changes were not stable and disappeared during longer incubation.  相似文献   

17.
The cysteine residue at F9(93) of the human hemoglobin (Hb A) beta chain, conserved in mammalian and avian hemoglobins, is located near the functionally important alpha1-beta2 interface and C-terminal region of the beta chain and is reactive to sulfhydryl reagents. The functional roles of this residue are still unclear, although regulation of local blood flow through allosteric S-nitrosylation of this residue is proposed. To clarify the role of this residue and its functional homology to F9(88) of the alpha chain, we measured oxygen equilibrium curves, UV-region derivative spectra, Soret-band absorption spectra, the number of titratable -SH groups with p-mercuribenzoate and the rate of reaction of these groups with 4, 4'-dipyridine disulfide for three recombinant mutant Hbs with single amino acid substitutions: Ala-->Cys at 88alpha (rHb A88alphaC), Cys-->Ala at 93beta (rHb C93betaA) and Cys-->Thr at 93beta (rHb C93betaT). These Hbs showed increased oxygen affinities and impaired allosteric effects. The spectral data indicated that the R to T transition upon deoxygenation was partially restricted in these Hbs. The number of titratable -SH groups of liganded form was 3.2-3.5 for rHb A88alphaC compared with 2.2 for Hb A, whereas those for rHb C93betaA and rHb C93betaT were negligibly small. The reduction of rate of reaction with 4,4'-dipyridine disulfide upon deoxygenation in rHb A88alphaC was smaller than that in Hb A. Our experimental data have shown that the residues at 88alpha and 93beta have definite roles but they have no functional homology. Structure-function relationships in our mutant Hbs are discussed.  相似文献   

18.
The epsilon-amino group of Lys-40 alpha forms a salt bridge with the alpha-carboxyl group of beta chain in deoxyhemoglobin and is considered to impose a constraint upon hemoglobin tetramer, stabilizing the T quaternary structure. Hb Kariya, in which Lys-40 alpha is replaced by Glu, provides a unique opportunity to investigate the functional role of this salt bridge. Hb Kariya showed oxygen binding properties characterized by a high affinity, diminished cooperativity, a reduced alkaline Bohr effect, and a decreased effect of phosphates upon oxygen affinity. In deoxyHb Kariya the reactivity of the sulfhydryl groups of cysteins-93 beta with 4,4'-dipyridine disulfide was profoundly enhanced, being comparable to that for normal oxyhemoglobin (oxyHb A). The Soret band spectra, UV derivative spectra, and UV oxyminus-deoxy difference spectra indicated that oxyHb Kariya assumes a quaternary structure similar to that of oxyHb A whereas the T structure of deoxyHb Kariya is destabilized, and Hb Kariya remains predominantly in the R state upon deoxygenation. Resonance Raman scattering by deoxyHb Kariya showed that the Fe-N epsilon(proximal His) bond is less stretched than that of deoxyHb A. These experimental results provide structural basis for explaining the oxygen binding characteristics of Hb Kariya and further give direct evidence that the intersubunit salt bridge between Lys-40 alpha and the beta chain COOH terminus actually contributes to stabilization of the T quaternary structure, thereby playing a key role in cooperative oxygen binding by hemoglobin. The nature of another salt bridge between Asp-94 beta and the COOH-terminal His of beta chain was also discussed in comparison with the salt bridge involving Lys-40 alpha.  相似文献   

19.
Thioltransferase in human red blood cells: purification and properties   总被引:3,自引:0,他引:3  
Thioltransferase activity was identified and the enzyme purified to apparent homogeneity from human red blood cells. Activity was measured as glutathione-dependent reduction of the prototype substrate hydroxyethyl disulfide; formation of oxidized glutathione (GSSG) was coupled to NADPH oxidation by GSSG reductase (1 unit of activity = 1 mumol/min of NADPH oxidized). The thioltransferase-GSH-GSSG reductase system was shown also to catalyze the regeneration of hemoglobin from the mixed disulfide hemoglobin-S-S-glutathione (HbSSG) and to reactivate the metabolic control enzyme phosphofructokinase (PFK) after oxidation of its sulfhydryl groups. On a relative concentration basis, thioltransferase was about 1200 times more efficient than dithiothreitol in reactivation of phosphofructokinase; e.g., 500 microM DTT was required to effect the same extent of reactivation as that of 0.4 microM TTase. The GSH plus GSSG reductase system without thioltransferase was ineffective for reduction of HbSSG or reactivation of PFK. The average amount of thioltransferase in intact erythrocytes was calculated to be 4.6 units/g of Hb at 25 degrees C. This level of activity is about the same as those of other enzymes that participate in sulfhydryl maintenance in red blood cells, such as GSSG reductase and glucose-6-phosphate dehydrogenase. These results suggest a physiological role for the thioltransferase in erythrocyte sulfhydryl homeostasis. Certain properties of the human erythrocyte thioltransferase resemble those of other mammalian thioltransferase and glutaredoxin enzymes. Thus, the human erythrocyte enzyme, purified about 28,000-fold to apparent homogeneity, is a single polypeptide with a molecular weight of 11,300. Its N-terminus is blocked, it is heat stable, and it contains four cysteine residues per protein molecule. However, the human erythrocyte thioltransferase is a distinct protein based on its amino acid composition. For example, it contains no methionine residues; whereas the related mammalian enzymes described to date have at least one internal methionine residue in their largely homologous sequences.  相似文献   

20.
In order to clarify the functional and structural role of intra- and intersubunit hydrogen bonds in human hemoglobin (Hb A), we prepared two artificial beta chain mutant hemoglobins by site-directed mutagenesis. The mutant Hb Phe-37 beta, in which Trp-37 beta is replaced by Phe to remove the intersubunit hydrogen bond between Asp-94 alpha and Trp-37 beta at the alpha 1-beta 2 interface in deoxy Hb A, showed a markedly increased oxygen affinity and almost completely diminished Bohr effect and cooperativity. However, 1H-NMR data indicated that the structure of deoxy Hb Phe-37 beta is rather similar to that of deoxy Hb A. The enhanced tetramer-to-dimer dissociation previously observed in Hb Hirose (Trp-37 beta----Ser) together with our observation of the effects of organic phosphate on the structure and function of Hb Phe-37 beta suggested that a large part of the abnormal properties of Hb Phe-37 beta observed for dilute solutions appears to result from partial dissociation into alpha beta dimers rather than direct destabilization of the T-quaternary structure in the deoxygenated state. Thus, the primary and direct role of the hydrogen bond between Asp-94 alpha and Trp-37 beta is to stabilize the tetrameric assembly, and thereby this hydrogen bond indirectly contributes to stabilization of the T-quaternary structure. The other mutant Hb Phe-145 beta has a Phe residue at the 145 beta site and lacks the intrasubunit hydrogen bond formed between Tyr-145 beta and the carbonyl group of Val-98 beta in deoxy Hb A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号