首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
3.
4.
The Hemicentrotus pulcherrimus homologue of nanos (HpNanos), that encodes a protein containing two CCHC zinc finger motifs, was isolated from a gastrula cDNA library. The accumulation of HpNanos mRNA during embryonic development and the spatial expression pattern are reported. Developmental northern blot analysis revealed that HpNanos mRNA markedly accumulated during the blastula stages, and then decreased in abundance at the mesenchyme blastula stage. The second phase of HpNanos mRNA expression occurred during gastrulation, after which the expression returned to a low level. Whole-mount in situ hybridization showed that the HpNanos was exclusively expressed in four to six small micromere-descendant cells at the blastula stage. The expression of HpNanos was restricted to the coelomic pouch, which gives rise to the mesoderm of the ventral surface of the adult rudiment, at the prism stage. These results suggest that HpNanos expression will be instrumental for future analyses of the function of small micromere-descendant cells and of the origin of germ cells during sea urchin development.  相似文献   

5.
6.
7.
用RACE-PCR方法从原肠期SMART文库中扩增到银鲫pou2基因的全长cDNA,其全长为2421bp,开放阅读框为1416bp,编码471个氨基酸,与斑马鱼pou2基因的氨基酸序列一致性高达91.0%。我们用RT-PCR和整体原位杂交的方法研究了银鲫pou2基因在胚胎发育过程中的时空表达图式。RT-PCR结果显示,银鲫pou2基因有母源转录本,其合子基因在高囊胚期强烈表达,在50%下包期和90%下包期也有高量的转录本,但在100%下包期表达量急剧降低,至体节期时已经完全检测不到其转录本。胚胎整体原位杂交结果显示其母源转录本在所有的胚盘细胞中。在高囊胚期和50%下包期,高度表达的合子转录本仍在所有的胚盘细胞中,但至90%下包期时,pou2的表达向胚胎背部的正中线汇聚,集中在神经板的两侧区域和脑部的两条横向条带。在100%下包期时,pou2的表达集中在神经板的中间区域以及预期形成的中后脑区域。至体节期时,转录本消失,这与RT-PCR结果高度一致。银鲫pou2基因的表达图式提示该基因在胚胎发育的早期具有重要作用,它可能参与调控神经板的形成和中后脑细胞的发育命运。  相似文献   

8.
A bone morphogenetic protein 2/4 (BMP2/4) gene has been cloned from the starfish, Archaster typicus, for the purpose of investigating the expression pattern of the BMP4 gene in echinoderm embryos which do not produce micromeres. The isolated gene (named AtBMP2/4) contained two exons that encoded the entire coding region. The deduced AtBMP2/4 protein sequence contained 509 amino acids. Sequence comparison showed that it shared high amino acid similarity with sea urchin BMP2/4 and Xenopus BMP2 and BMP4. Northern blot analyses indicated that AtBMP2/4 mRNA initially appears at the blastula stage and has a maximal expression level at the gastrula stage. Whole-mount in situ hybridization revealed that AtBMP2/4 mRNA is expressed in the archenteron, coelomic vesicles, and ectodermal cells of gastrula stage embryos. The observed spatial distribution pattern vastly differs from that of sea urchin SpBMP2/4, which is expressed mainly in the oral ectoderm region of the mesenchyme blastula and early gastrula embryos.  相似文献   

9.
10.
11.
12.
13.
Apolipoprotein D (ApoD) is a secreted protein that belongs to the lipocalin family. We describe the expression pattern of ApoD during mouse embryogenesis by in situ hybridization using RNA probes. ApoD is expressed at E9 in mesenchymal cells in the rombencephalic–mesencephalic region. At E9.5 the cephalic ApoD-positive cells appear in the mesenchyme, and at later stages (starting at E10.5) ApoD expression is seen in meninges. Within the neuroepithelium, ApoD is expressed in pericytes surrounding brain and spinal cord capillaries from E10.5 to birth. Other places of expression of ApoD are the mesenchyme surrounding the olfactory epithelium and semicircular canals, as well as chondroblasts of skull and vertebrae.  相似文献   

14.
Immunoblotting using polyclonal antibodies (pAb) raised against an FR-1 receptor (FR-1R), a 57 kDa Arg-Gly-Asp-Ser (RGDS)-binding protein, of the sand dollar Clypeaster japonicus showed that the pAb monospecifically bound to the protein. FR-1R was present in purified plasma membrane, suggesting that the protein is a membrane-bound protein. The molecular structure of FR-1R did not change throughout the early embryogenesis, whereas its expression changed significantly during this period. FR-1R was present in the cortex of unfertilized eggs and was then transferred to the hyaline layer soon after the fertilization. The hyaline layer retained FR-1R immunoreactivity during early embryogenesis. FR-1R appeared on the basal side of the ectoderm at the morula stage and was retained basolaterally, at least, to the early gastrula stage. In mesenchyme blastulae, FR-1R was also present on the surface of primary mesenchyme cells (PMC). FR-1R was localized on the basal side of the ectoderm in early gastrulae, exclusively at the place where PMC formed ventrolateral aggregates, and at the apical tuft ectoderm. In vitro, PMC bound to FR-1R and its binding was inhibited in the presence of a synthetic RGDS peptide or the pAb. The pAb introduced into the blastocoele perturbed PMC migration and gastrulation. FR-1R was weakly recognized by antihuman integrin beta5 subunit pAb.  相似文献   

15.
16.
17.
18.
19.
20.
We have isolated and characterized a new endoderm-specific gene, designated Endo16, from a sea urchin gastrula stage cDNA library. Northern blot analysis and in situ hybridization experiments indicate that this gene is first expressed in the vegetal plate, a group of endodermal and mesenchymal precursor cells that are poised to invaginate in the first movement of gastrulation. Expression becomes progressively restricted to a subset of endodermal cells as development proceeds. To study the Endo16 gene product, a polyclonal antiserum was raised against bacterially expressed Endo16 protein. Indirect immunofluorescence experiments in midgastrula stage embryos reveal that the Endo16 protein is localized to the surface of endoderm and secondary mesenchyme cells. In Western blot experiments, the antiserum detects a small set of high molecular weight proteins ranging from 180 to greater than 300 kDa. Analysis of the nucleotide-derived amino acid sequence from a partial Endo16 cDNA clone reveals a highly repetitive, extremely acidic protein segment that includes the Arg-Gly-Asp (RGD) tripeptide known to be important in cell binding domains of a number of extracellular proteins. Taken together, these data suggest that the Endo16 protein may be an adhesion molecule involved in gastrulation of the sea urchin embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号