首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micropropagated plantlets of sugar cane were inoculated with the N2-fixing bacterium Acetobacter diazotrophicus. Various modifications on the basic plant culture medium MS were made for the plant/bacteria association. The protocol required the inoculation of the bacteria at the end of the rooting period in a medium without hormones or vitamins, and with the concentration of sugar and mineral nutrients reduced by a factor of 10. Individual plants were inoculated with A. diazotrophicus and maintained under the appropriate light and temperature condition used for micropropagation up to 7 days. The system favored the infection and the establishment of the bacteria within the plant tissue. Bacteria colonized the plant tissue and accumulated in inter-cellular cavities and the region of lateral root emergence and also colonizes the xylem vessels. The inoculated plantlets were subsequently transferred to the acclimatization phase and after 30 days it was possible to isolate the bacteria from plant tissue. This protocol permitted studies of infection and comparison among strains.  相似文献   

2.
Colonization of micropropagated sugarcane plants by Gluconacetobacter diazotrophicus and Herbaspirillum sp. was confirmed by a dot-immunoblot assay. In all, a 45-day short-term and 180-day long-term experiments conducted on micropropagated sugarcane plants of Co 86032, a sugar rich popular variety in South India, indicated the usefulness of these diazotrophs as plant growth promoting bacteria. Co-inoculation of these two bacteria enhanced the biomass considerably under N-limited condition in the short duration experiment. In the long-term experiment, the establishment of inoculated Herbaspirillum sp. remained stable with the age of the crop up to 180 days, while there was a reduction in population of G. diazotrophicus for the same period. The total bio-mass and leaf N were higher in plants inoculated with G. diazotrophicus and Herbaspirillum sp. without N fertilization and also in plants with 50% of the recommended N (140 kg ha(-1)) than the plants fertilized with recommended dose of inorganic N (280 kg ha(-1)). This experiment showed that inoculation with these bacteria in sugarcane variety Co 86032 could mitigate fertilizer N application considerably in sugarcane cultivation.  相似文献   

3.
Six closely related N2-fixing bacterial strains were isolated from surface-sterilized roots and stems of four different rice varieties. The strains were identified as Serratia marcescens by 16S rRNA gene analysis. One strain, IRBG500, chosen for further analysis showed acetylene reduction activity (ARA) only when inoculated into media containing low levels of fixed nitrogen (yeast extract). Diazotrophy of IRBG500 was confirmed by measurement of 15N2 incorporation and by sequence analysis of the PCR-amplified fragment of nifH. To examine its interaction with rice, strain IRBG500 was marked with gusA fused to a constitutive promoter, and the marked strain was inoculated onto rice seedlings under axenic conditions. At 3 days after inoculation, the roots showed blue staining, which was most intense at the points of lateral root emergence and at the root tip. At 6 days, the blue precipitate also appeared in the leaves and stems. More detailed studies using light and transmission electron microscopy combined with immunogold labeling confirmed that IRBG500 was endophytically established within roots, stems, and leaves. Large numbers of bacteria were observed within intercellular spaces, senescing root cortical cells, aerenchyma, and xylem vessels. They were not observed within intact host cells. Inoculation of IRBG500 resulted in a significant increase in root length and root dry weight but not in total N content of rice variety IR72. The inoculated plants showed ARA, but only when external carbon (e.g., malate, succinate, or sucrose) was added to the rooting medium.  相似文献   

4.
The vigorous proliferation of Ralstonia solanacearum OE1-1 in host intercellular spaces after the invasion of host plants is necessary for the virulence of this bacterium. A folate auxotroph, RM, in which a mini-Tn5 transposon was inserted into pabB encoding para-aminobenzoate synthase component I, lost its ability to vigorously proliferate in intercellular spaces along with its systemic infectivity and virulence after inoculation into roots and infiltration into leaves of tobacco plants. Complementation of RM with the pabB gene allowed the mutant to multiply in intercellular spaces and to cause disease. In tobacco plants that were pretreated with folate, RM was able to vigorously proliferate in the intercellular spaces and cause disease. Interestingly, when it was inoculated through cut stems, the mutant multiplied in the plants and was virulent. Moreover, the mutant multiplied well in stem fluids but not in intercellular fluids, suggesting that the folate concentration within intercellular spaces may be a limiting factor for bacterial proliferation. Therefore, folate biosynthesis contributes to the vigorous proliferation of bacteria in intercellular spaces and leads to systemic infectivity resulting in virulence.  相似文献   

5.
巴西固氮螺菌Yu62在玉米根的定植   总被引:1,自引:0,他引:1  
将GFPmut2质粒中的gfp基因(编码绿色荧光蛋白)克隆到载体pVK100中,构建成重组质粒pVK1001。将pVK1001通过电转化方法导入到联合固氮菌巴西固氮螺菌Yu62中,获得GFP)标记的巴西固氮螺菌Yu62菌株。用标记菌株接种限菌培养条件下生长的玉米(农大3318)幼苗,在接种后8d、12d,用激光共聚焦扫描显微镜进行观测,结果表明巴西固氮螺菌Yu62菌株能定植于玉米根部皮层的薄壁细胞间隙。用扫描电镜和超薄切片电镜观察表明,大多数细菌主要定植于根表,少数菌可进入玉米根组织内。  相似文献   

6.
The ability of Bacillus subtilis, strain BB, to colonise cabbage seedlings endophytically was examined following seed inoculation. Strain BB was recovered from different plant parts including leaves (cotyledons), stem (hypocotyl) and roots. While high bacterial populations persisted in the roots and lower stem, they were lower in the upper stem and leaves through time. In addition to cabbage, strain BB colonised endophytically the roots of 5 other vegetable brassicas. Fatty acid methyl ester (FAME) and PCR fingerprinting analysis confirmed the reliability of the detection method. Studies conducted with transmission electron microscope (TEM) showed that BB mainly colonised intercellular spaces of cortical tissues including intercellular spaces close to the conducting elements of roots and stem of cabbage seedlings. Gold labelling was specifically associated with BB and the fibrillar material filling the intercellular spaces where bacterial cells were found.  相似文献   

7.
Nitrogen-fixing bacteria, isolated from the sugar solution in intercellular spaces of sugarcane stems, were compared with the type strain of Acetobacter diazotrophicus (PAL-5) and found to be congruent with it in all characters studied. These characters were 37 morphological and biochemical tests, cellular fatty acid composition, and nitrogenase activity. The nitrogenase activity was measured by acetylene reduction and H(inf2) evolution and found to be unusual in that the H(inf2) evolution was suppressed much less than expected by high concentrations of acetylene.  相似文献   

8.
The vigorous proliferation of Ralstonia solanacearum OE1-1 in host intercellular spaces after the invasion of host plants is necessary for the virulence of this bacterium. A folate auxotroph, RM, in which a mini-Tn5 transposon was inserted into pabB encoding para-aminobenzoate synthase component I, lost its ability to vigorously proliferate in intercellular spaces along with its systemic infectivity and virulence after inoculation into roots and infiltration into leaves of tobacco plants. Complementation of RM with the pabB gene allowed the mutant to multiply in intercellular spaces and to cause disease. In tobacco plants that were pretreated with folate, RM was able to vigorously proliferate in the intercellular spaces and cause disease. Interestingly, when it was inoculated through cut stems, the mutant multiplied in the plants and was virulent. Moreover, the mutant multiplied well in stem fluids but not in intercellular fluids, suggesting that the folate concentration within intercellular spaces may be a limiting factor for bacterial proliferation. Therefore, folate biosynthesis contributes to the vigorous proliferation of bacteria in intercellular spaces and leads to systemic infectivity resulting in virulence.  相似文献   

9.
将GFPmut2质粒中的gfp基因 (编码绿色荧光蛋白)克隆到载体pVK100中,构建成重组质粒pVK1001.将pVK1001通过电转化方法导入到联合固氮菌巴西固氮螺菌Yu62中,获得GFP标记的巴西固氮螺菌Yu62菌株.用标记菌株接种限菌培养条件下生长的玉米(农大3318)幼苗,在接种后8 d、12 d,用激光共聚焦扫描显微镜进行观测,结果表明巴西固氮螺菌Yu62菌株能定植于玉米根部皮层的薄壁细胞间隙.用扫描电镜和超薄切片电镜观察表明,大多数细菌主要定植于根表,少数菌可进入玉米根组织内.  相似文献   

10.
A beta-glucoronidase (GUS)-marked strain of Herbaspirillum seropedicae Z67 was inoculated onto rice seedling cvs. IR42 and IR72. Internal populations peaked at over 10(6) log CFU per gram of fresh weight by 5 to 7 days after inoculation (DAI) but declined to 10(3) to 10(4) log CFU per gram of fresh weight by 28 DAI. GUS staining was most intense on coleoptiles, lateral roots, and at the junctions of some of the main and lateral roots. Bacteria entered the roots via cracks at the points of lateral root emergence, with cv. IR72 appearing to be more aggressively infected than cv. IR42. H. seropedicae subsequently colonized the root intercellular spaces, aerenchyma, and cortical cells, with a few penetrating the stele to enter the vascular tissue. Xylem vessels in leaves and stems were extensively colonized at 2 DAI but, in later harvests (7 and 13 DAI), a host defense reaction was often observed. Dense colonies of H. seropedicae with some bacteria expressing nitrogenase Fe-protein were seen within leaf and stem epidermal cells, intercellular spaces, and substomatal cavities up until 28 DAI. Epiphytic bacteria were also seen. Both varieties showed nitrogenase activity but only with added C, and the dry weights of the inoculated plants were significantly increased. Only cv. IR42 showed a significant (approximately 30%) increase in N content above that of the uninoculated controls, and it also incorporated a significant amount of 15N2.  相似文献   

11.
巴西固氮螺菌(Azospirillum brasilence)是重要的植物促生内生菌之一。用gfp基因标记固氮螺菌后接种无菌的水稻和烟草幼苗的根部,限菌培养一定时间后,用共聚焦激光显微镜观察,结果表明:除了根内部有发荧光的螺菌定殖外,螺菌还分布在茎、叶的表皮细胞,皮层细胞和维管系统组织的细胞和细胞间隙。从根、茎、叶器官分离固氮螺菌,都存在有较高的螺菌群体密度。这一结果证明螺菌在植物内存在着从根部向茎、叶顶端的迁移现象。这一发现为研究巴西固氮螺菌在宿主植物体内的迁移运动的机制、与植物细胞间的分子相互作用及其对植物的促生作用奠定了生态学和细胞形态学的基础,也为实际应用提供了进一步的科学依据,具有重要的科学和实践意义。  相似文献   

12.
Aims:  To induce growth of endophytic bacteria residing in an unculturable state in tissues of in vitro -grown potato plantlets. To isolate and identify the induced bacteria and to localize the strains in tissues of in vitro -grown potato plantlets.
Methods and Results:  The inoculation of in vitro -grown potato plants with Pseudomonas fluorescens IMBG163 led to induction of another bacterium, a pink-pigmented facultative methylotroph that was identified as Methylobacterium sp . using phylogenetic 16S rDNA approach . Two molecular methods were used for localizing methylobacteria in potato plantlets: PCR and in situ hybridization (ISH/FISH). A PCR product specific for the Methylobacterium genus was found in DNA isolated from the surface-sterilized plantlet leaves. Presence of Methylobacterium rRNA was detected by ISH/FISH in leaves and stems of inoculated as well as axenic potato plantlets although the bacterium cannot be isolated from the axenic plants.
Conclusion:  Methylobacterium sp. resides in unculturable state within tissues of in vitro -grown potato plants and becomes culturable after inoculation with P. fluorescens IMBG163.
Significance and Impact of the Study:  In order to develop endophytic biofertilizers and biocontrol agents, a detailed knowledge of the life-style of endophytes is essential. To our knowledge, this is the first report on increase of the culturability of endophytes in response to inoculation by nonpathogenic bacteria.  相似文献   

13.
The aim of this study was to investigate the ability of Pantoea agglomerans, a plant growth-promoting bacterium, to colonize various regions and tissues of the wheat plant (Triticum aestivum L.) by using different inoculation methods and inoculum concentrations. In addition, the enzyme-linked immunosorbent assay (ELISA) and transmission electron microscopy (TEM) were used to determine: (a) the ability of the bacterial cells to grow and survive both on the surface and within internal tissue of the plant and (b) the response of the plant to bacterial infection. After inoculation, cells of the diazotrophic bacterial strain P. agglomerans were found to be located in roots, stems and leaves. Colony development of bacterial cells was only detected within intercellular spaces of the root and on the root surface. However, single bacterial cells were observed in leaves and stems on the surface of the epidermis, in the vicinity to stomatal cells, within intercellular spaces of the mesophyll and within xylem vessels. Inoculated bacterial cells were found to be able to enter host tissues, to multiply in the plant and to maintain a delicate relationship between endophyte and host. The density of bacterial settlement in the plant in all experiments was about 106 to 107 cells per mL root or shoot sap. Establishment was confirmed by a low coefficient of variation of ELISA means at these concentrations.  相似文献   

14.
Significant nitrogen fixation has recently been demonstratedin Brazilian sugar cane (Saccharum officinarum) cultivars knownto form associations with a number of diazotrophs, includingAcetobacter diazotrophicus, an acid-tolerant endophytic bacteriumwhich grows best on a sucrose-rich medium. In a series of experiments,aseptically-grown sugar cane plantlets were rooted in a liquidmedium and inoculated with A. diazotrophicus originally isolatedfrom field-grown sugar cane. After 4, 7, 9, and 15 d, plantswere examined under light, scanning and transmission electronmicroscopes and the presence of A. diazotrophicus on and withinplant tissues was confirmed by immunogold labelling. By 15 d,external bacterial colonization was seen on roots and lowerstems, particularly at cavities in lateral root junctions. Theloose cells of the root cap at root tips were a site of entryof the bacteria into root tissues. Both at lateral root junctionsand root tips, bacteria were also seen in enlarged, apparentlyintact, epidermal cells. After 15 d, bacteria were present inxylem vessels at the base of the stem, many connected via mucusto spiral secondary thickening. There was no obvious pathogenicreaction to the bacteria within the xylem. From these observations,it is proposed that, under experimental conditions, A. diazotrophicusfirstly colonized the root and lower stem epidermal surfacesand then used root tips and lateral root junctions to enterthe sugar cane plant where it was distributed around the plantin the transpiration stream. It is further suggested that thexylem vessels in the dense shoots of mature plants are alsoa possible site of N2-fixation by diazotrophs as they providethe low pO2 and energy as sucrose necessary for nitrogenaseactivity. Key words: Acetobacter diazotrophicus, endophyte, infection, nitrogen fixation, sugar cane.  相似文献   

15.
Colonization of Maize and Rice Plants by Strain Bacillus megaterium C4   总被引:1,自引:0,他引:1  
Liu X  Zhao H  Chen S 《Current microbiology》2006,52(3):186-190
Bacillus megaterium C4, a nitrogen-fixing bacterium, was marked with the gfp gene. Maize and rice seedlings were inoculated with the, GFP-labeled B. megaterium C4 and then grown in gnotobiotic condition. Observation by confocal laser scanning microscope showed that the GFP-labeled bacterial cells infected the maize roots through the cracks formed at the lateral root junctions and then penetrated into cortex, xylem, and pith, and that the bacteria migrated slowly from roots to stems and leaves. The bacteria were mainly located in the intercellular spaces, although a few bacterial cells were also present within the xylem vessels, root hair cells, epidermis, cortical parenchyma, and pith cells. In addition, microscopic observation also revealed clearly that the root tip in the zone of elongation and differentiation and the junction between the primary and the lateral roots were the two sites for the bacteria entry into rice root. Therefore, we conclude that this Gram-positive nitrogen-fixer has a colonization pattern similar to those of many Gram-negative diazotrophs, such as Azospirillun brasilense Yu62 and Azoarcus sp. As far as we know, this is the first detailed report of the colonization pattern for Gram-positive diazotrophic Bacillus.  相似文献   

16.
巴西固氮螺菌(Azospirillrm brasilence)是重要的植物促生内生菌之一.用gfp基因标记固氮螺菌后接种无菌的水稻和烟草幼苗的根部,限制培养一定时间后,用共聚焦激光显微镜观察,结果表明:除了根部有发荧光的螺菌定殖外,螺菌还分布在茎、叶的表皮细胞,皮层细胞和维管系统组织的细胞间隙.从根、茎、叶器官分离固氮螺菌,都存在有较高的螺菌群体密度.这一结果证明螺菌在植物内存在着从根部向茎、叶顶端的迁移现象.这一发现为研究巴西固氮螺菌在窠主植物体内的迁移运动的机制、与植物细胞间的分子相互作用及其对植物的促生作用奠定了生态学和细胞形态学的基础,也为实际应用提示了进一步的科学依据,具有重要的科学和实践意义.  相似文献   

17.
Endophytic bacteria can colonize various plants and organs. However, endophytes colonizing plant reproductive organs have been rarely analyzed. In this study, endophytes colonizing flowers as well as berries and seeds of grapevine plants grown under natural conditions were investigated by cultivation as well as by fluorescence in situ hybridization. For comparison, bacteria were additionally isolated from other plant parts and the rhizosphere and characterized. Flowers, fruits, and seeds hosted various endophytic bacteria. Some taxa were specifically isolated from plant reproductive organs, whereas others were also detected in the rhizosphere, endorhiza or grape inflo/infructescence stalk at the flowering or berry harvest stage. Microscopic analysis by fluorescence in situ hybridization of resin-embedded samples confirmed the presence of the isolated taxa in plant reproductive organs and enabled us to localize them within the plant. Gammaproteobacteria (including Pseudomonas spp.) and Firmicutes (including Bacillus spp.) were visualized inside the epidermis and xylem of ovary and/or inside flower ovules. Firmicutes, mainly Bacillus spp. were additionally visualized inside berries, in the intercellular spaces of pulp cells and/or xylem of pulp, but also along some cell walls inside parts of seeds. Analysis of cultivable bacteria as well as microscopic results indicated that certain endophytic bacteria can colonize flowers, berries, or seeds. Our results also indicated that some specific taxa may not only derive from the root environment but also from other sources such as the anthosphere.  相似文献   

18.
Fluorescence and confocal laser scanning microscopy were explored to investigate the movement and localization of mineral oils in citrus. In a laboratory experiment, fluorescence microscopy observation indicated that when a 'narrow' distillation fraction of an nC23 horticultural mineral oil was applied to adaxial and opposing abaxial leaf surfaces of potted orange [Citrus x aurantium L. (Sapindales: Rutaceae)] trees, oil penetrated steadily into treated leaves and, subsequently, moved to untreated petioles of the leaves and adjacent untreated stems. In another experiment, confocal laser scanning microscopy was used to visualize the penetration into, and the subsequent cellular distribution of, an nC24 agricultural mineral oil in C. trifoliata L. seedlings. Oil droplets penetrated or diffused into plants via both stomata and the cuticle of leaves and stems, and then moved within intercellular spaces and into various cells including phloem and xylem. Oil accumulated in droplets in intercellular spaces and within cells near the cell membrane. Oil entered cells without visibly damaging membranes or causing cell death. In a field experiment with mature orange trees, droplets of an nC23 horticultural mineral oil were observed, by fluorescence microscopy, in phloem sieve elements in spring flush growth produced 4-5 months and 16-17 months after the trees were sprayed with oil. These results suggest that movement of mineral oil in plants is both apoplastic via intercellular spaces and symplastic via plasmodesmata. The putative pattern of the translocation of mineral oil in plants and its relevance to oil-induced chronic phytotoxicity are discussed.  相似文献   

19.
Five weeks after the in vivo inoculation of potatoes ( Solanum tuberosum L.) with Agrobacterium. tumefaciens strain B6S3, bacteria were found in the non-differentiated cells of tumors (formed from xylem parenchyma or other living cells), in xylem cells at the site of inoculation, as well as in xylem cells of the adjacent stem.
Bacteria were attached by fibrillar aggregates to the tumor cell walls. They were also attached to a fibrillar mass which arose from agrobacteria connected to this mass in the tumor. Agrobacteria, singly or in pairs, were attached to an electron dense formation (possibly bacterial extracellular polysaccharides) found both inside the xylem cells of the stem adjacent to the tumor and at the site of inoculation. Some A. tumefaciens cells were attached by means of a pedestal-like structure at the inoculation site.
A possible function of the different means of attachment of A. tumefaciens in both nontransformed plant cells and tumors is discussed.  相似文献   

20.
Recombinant Gluconacetobacter diazotrophicus containing Cry1Ac gene from Bacillus thuringiensis var. kurstaki borne on pKT230, shuttle vector, was generated. PCR amplification of Cry1Ac gene present in recombinant G. diazotrophicus yielded a 278-bp DNA product. The nitrogenase assay has revealed that the recombinant G. diazotrophicus in sugarcane stem produced similar levels of nitrogenase compared to wild-type G. diazotrophicus. The presence of 130-kDa protein in apoplastic fluid from sugarcane stem harvested from pots inoculated with recombinant G. diazotrophicus shows that the translocated G. diazotrophicus produces 130-kDa protein which is recognized by the hyperimmune antiserum raised against 130-kDa protein. The first instar Eldana saccharina neonate larvae that fed on artificial medium containing recombinant G. diazotrophicus died within 72 h after incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号