首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Two mutations in the A-site of 18S rRNA of Saccharomyces cerevisiae were investigated. The first, A1491G (rdn15), creates in yeast the same C1409-G1491 base pair as in Escherichia coli and has behaved as an antisuppressor in genetic studies. Ribosomes from rdn15 are error-restrictive but their peptidyltransferase activity remains unchanged. The second mutation, U1495C (rdnhyg1), was initially isolated as a hygromycin-resistant mutation in Tetrahymena thermophila. We show that rdnhyg1 ribosomes are slightly error prone. Mutation rdnhyg1 does not affect catalytic activity, but it affects translocation, confirming the importance of nucleotide 1495 in the ratchet-like movement of the two subunits during translation. Paromomycin, an aminoglycoside antibiotic that binds to the ribosomal A-site, induces translational misreading and causes sensitivity to yeast cells. Mutation rdn15 is shown to be highly sensitive to both effects of paromomycin, while mutation rdnhyg1 is relatively resistant. Tobramycin, another aminoglycoside, does not affect the growth of yeast cells. Like paromomycin, however, it increases the error rate in rdn15 ribosomes relative to wild-type and decreases it in rdnhyg1 ribosomes. These mutations help define the role of two crucial sites in ribosome function and distinguish the modes of action of two aminoglycosides, a useful fact in the search for new strategies in drug design.  相似文献   

3.
4.
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.  相似文献   

5.
Like most eukaryotes, Saccharomyces cerevisiae cells contain a minor 5.8SL rRNA that, relative to the major 5.8SS species, carries several extra nucleotides at the 5'-end. The two species are produced by alternative pathways that differ in the events removing the 3'-terminal region of Internal Transcribed Spacer 1 from the 27SA2 pre-rRNA. Whereas the pathway leading to 5.8SS rRNA is well established, that producing the 5'-end of 5.8SL (called B1L) is poorly understood. Northern analysis of two different mutants of S. cerevisiae that overproduce 5.8SL rRNA revealed the presence of a fragment corresponding to the 3'-terminal region of Internal Transcribed Spacer 1 (ITS1) directly upstream from site B1L. Immunoprecipitation experiments showed this fragment to be associated with the trans-acting factor Rrp5p required for processing at the early sites A0-A3. Together these data clearly support that the 5'-end of 5.8SL rRNA is an endonucleolytic event. In vivo mutational analysis demonstrated the lack of any cis-acting sequence elements directing this cleavage within ITS1.  相似文献   

6.
RNA isolation from yeast is complicated by the need to initially break the cell wall. While this can be accomplished by glass bead disruption or enzyme treatment, these approaches result in DNA contamination and/or the need for incubation periods. We have developed a protocol for the isolation of RNA samples from yeast that minimizes degradation by RNases and incorporates two purification steps: acid phenol extraction and binding to a silica matrix. The procedure requires no precipitation steps, facilitating automation, and can be completed in less than 90 min. The RNA quality is ideal for microarray analysis.  相似文献   

7.
Eubacterial ribosomes stalled on defective mRNAs are released through a mechanism referred to as trans-translation, depending on the coordinated actions of small protein B (SmpB) and transfer messenger RNA (tmRNA). A series of tmRNA variants with deletions in each structural domain were produced. Their structures were monitored by enzymatic and chemical probes in vitro, in the presence and absence of SmpB. Dissociation constants between these RNAs and SmpB from Aquifex aeolicus were derived by surface plasmon resonance (SPR) combined with filter binding assays. Three independent experimental evidences, including filter binding assays, SPR, and concentration titrations of the RNA–protein reactivity changes toward structural probes, indicate that the binding site that has the highest affinity for the protein is located outside the tRNA domain, upstream of the internal tag. The minimal tmRNA fragment that contains this high affinity site for SmpB, and also contains another site of lower affinity, includes the tag reading frame and three downstream pseudoknots that form a ring structure in solution.  相似文献   

8.
9.
Ribosomal (r)RNAs are extensively modified during ribosome synthesis and their modification is required for the fidelity and efficiency of translation. Besides numerous small nucleolar RNA-guided 2′-O methylations and pseudouridinylations, a number of individual RNA methyltransferases are involved in rRNA modification. WBSCR22/Merm1, which is affected in Williams–Beuren syndrome and has been implicated in tumorigenesis and metastasis formation, was recently shown to be involved in ribosome synthesis, but its molecular functions have remained elusive. Here we show that depletion of WBSCR22 leads to nuclear accumulation of 3′-extended 18SE pre-rRNA intermediates resulting in impaired 18S rRNA maturation. We map the 3′ ends of the 18SE pre-rRNA intermediates accumulating after depletion of WBSCR22 and in control cells using 3′-RACE and deep sequencing. Furthermore, we demonstrate that WBSCR22 is required for N7-methylation of G1639 in human 18S rRNA in vivo. Interestingly, the catalytic activity of WBSCR22 is not required for 18S pre-rRNA processing, suggesting that the key role of WBSCR22 in 40S subunit biogenesis is independent of its function as an RNA methyltransferase.  相似文献   

10.
Errors during the process of translating mRNA information into protein products occur infrequently. Frameshift errors occur less frequently than other types of errors, suggesting that the translational machinery has more robust mechanisms for precluding that kind of error. Despite these mechanisms, mRNA sequences have evolved that increase the frequency up to 10,000-fold. These sequences, termed programmed frameshift sites, usually consist of a heptameric nucleotide sequence, at which the change in frames occurs along with additional sequences that stimulate the efficiency of frameshifting. One such stimulatory site derived from the Ty3 retrotransposon of the yeast Saccharomyces cerevisiae (the Ty3 stimulator) comprises a 14 nucleotide sequence with partial complementarity to a Helix 18 of the 18S rRNA, a component of the ribosome's accuracy center. A model for the function of the Ty3 stimulator predicts that it base pairs with Helix 18, reducing the efficiency with which the ribosome rejects erroneous out of frame decoding. We have tested this model by making a saturating set of single-base mutations of the Ty3 stimulator. The phenotypes of these mutations are inconsistent with the Helix 18 base-pairing model. We discuss the phenotypes of these mutations in light of structural data on the path of the mRNA on the ribosome, suggesting that the true target of the Ty3 stimulator may be rRNA and ribosomal protein elements of the ribosomal entry tunnel, as well as unknown constituents of the solvent face of the 40S subunit.  相似文献   

11.
Eukaryotic cells have quality control systems that eliminate nonfunctional rRNAs with deleterious mutations (nonfunctional rRNA decay, NRD). We have previously reported that 25S NRD requires an E3 ubiquitin ligase complex, which is involved in ribosomal ubiquitination. However, the degradation process of nonfunctional ribosomes has remained unknown. Here, using genetic screening, we identified two ubiquitin-binding complexes, the Cdc48-Npl4-Ufd1 complex (Cdc48 complex) and the proteasome, as the factors involved in 25S NRD. We show that the nonfunctional 60S subunit is dissociated from the 40S subunit in a Cdc48 complex-dependent manner, before it is attacked by the proteasome. When we examined the nonfunctional 60S subunits that accumulated under proteasome-depleted conditions, the majority of mutant 25S rRNAs retained their full length at a single-nucleotide resolution. This indicates that the proteasome is an essential factor triggering rRNA degradation. We further showed that ribosomal ubiquitination can be stimulated solely by the suppression of the proteasome, suggesting that ubiquitin-proteasome-dependent RNA degradation occurs in broader situations, including in general rRNA turnover.  相似文献   

12.
13.
We have previously shown that the Xenopus homologue of cold-inducible RNA binding protein, XCIRP-1, is required for the morphogenetic migration of the pronephros during embryonic development. However, the underlying molecular mechanisms remain elusive. Here, we report that XCIRP is essential for embryonic cell movement, as suppression of XCIRP by microinjection of anti-sense mRNA and morpholino antisense oligonucleotides (MOs) significantly reduced protein expression, inhibited the cell migration rate, and inhibited eFGF and activin-induced animal cap elongation. By immunoprecipitation and RT-PCR, we further showed that the mRNA of a panel of adhesion molecules, including alphaE- and beta-catenin, C- and E-cadherin, and paraxial proto-cadherin, are the targets of XCIRP. Consistently, in animal cap explant studies, suppression of XCIRP by MOs inhibited the expression of these adhesion molecules, while over-expression of sense XCIRP-1 mRNA fully rescued this inhibition. Taken together, these results suggest for the first time that XCIRP is required to maintain the expression of adhesion molecules and cell movement during embryonic development.  相似文献   

14.
Compared to the prokaryotic 70 S ribosome, the eukaryotic 80 S ribosome contains additional ribosomal proteins and extra segments of rRNA, referred to as rRNA expansion segments (ES). These eukaryotic-specific rRNA ES are mainly on the periphery of the 80 S ribosome, as revealed by cryo-electron microscopy (cryo-EM) studies, but their precise function is not known. To address the question of whether the rRNA ES are structurally conserved among 80 S ribosomes of different fungi we performed cryo-electron microscopy on 80 S ribosomes from the thermophilic fungus Thermomyces lanuginosus and compared it to the Saccharomyces cerevisiae 80 S ribosome. Our analysis reveals general structural conservation of the rRNA expansion segments but also changes in ES27 and ES7/39, as well as the absence of a tertiary interaction between ES3 and ES6 in T. lanuginosus. The differences provide a hint on the role of rRNA ES in regulating translation. Furthermore, we show that the stalk region and interactions with elongation factor 2 (eEF2) are different in T. lanuginosus, exhibiting a more extensive contact with domain I of eEF2.  相似文献   

15.
In eukaryotic cells, nuclear export of nascent ribosomal subunits through the nuclear pore complex depends on the small GTPase Ran. However, neither the nuclear export signals (NESs) for the ribosomal subunits nor the receptor proteins, which recognize the NESs and mediate export of the subunits, have been identified. We showed previously that Nmd3p is an essential protein from yeast that is required for a late step in biogenesis of the large (60S) ribosomal subunit. Here, we show that Nmd3p shuttles and that deletion of the NES from Nmd3p leads to nuclear accumulation of the mutant protein, inhibition of the 60S subunit biogenesis, and inhibition of the nuclear export of 60S subunits. Moreover, the 60S subunits that accumulate in the nucleus can be coimmunoprecipitated with the NES-deficient Nmd3p. 60S subunit biogenesis and export of truncated Nmd3p were restored by the addition of an exogenous NES. To identify the export receptor for Nmd3p we show that Nmd3p shuttling and 60S export is blocked by the Crm1p-specific inhibitor leptomycin B. These results identify Crm1p as the receptor for Nmd3p export. Thus, export of the 60S subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway.  相似文献   

16.
Summary Mutations in theRNA1 gene ofSaccharomyces cerevisiae, which encodes an essential cytosolic protein, affect the production and processing of all major classes of RNA. The mechanisms underlying these effects are not at all understood. Detailed comparative sequence analyses revealed that the RNA1 protein belongs to a superfamily, the members of which contain repetitive leucine-rich motifs (LRM). Within this superfamily RNA1 is most closely related to the ribonuclease/angiogenin inhibitor (RAI), which is a tightly binding inhibitor of ribonucleolytic activities in mammals. These results not only provide important clues to the structure, function and evolution of the RNAI protein, but also have intriguing implications for possible novel functions of RAI.  相似文献   

17.
18.
The mechanism by which capping protein (CP) binds barbed ends of actin filaments is not understood, and the physiological significance of CP binding to actin is not defined. The CP crystal structure suggests that the COOH-terminal regions of the CP alpha and beta subunits bind to the barbed end. Using purified recombinant mutant yeast CP, we tested this model. CP lacking both COOH-terminal regions did not bind actin. The alpha COOH-terminal region was more important than that of beta. The significance of CP's actin-binding activity in vivo was tested by determining how well CP actin-binding mutants rescued null mutant phenotypes. Rescue correlated well with capping activity, as did localization of CP to actin patches, indicating that capping is a physiological function for CP. Actin filaments of patches appear to be nucleated first, then capped with CP. The binding constants of yeast CP for actin suggest that actin capping in yeast is more dynamic than in vertebrates.  相似文献   

19.
PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several cases, we found that the ability of the PDI1 homologues to restore viability to a pdi1-deleted strain when overexpressed was dependent on the presence of low endogenous levels of one or more of the other homologues. This shows that the homologues are not functionally interchangeable. In fact, Mpd1p was the only homologue capable of carrying out all the essential functions of Pdi1p. Furthermore, the presence of endogenous homologues with a CXXC motif in the thioredoxin-like domain is required for suppression of a pdi1 deletion by EUG1 (which contains two CXXS active site motifs). This underlines the essentiality of protein disulfide isomerase-catalyzed oxidation. Most mutant combinations show defects in carboxypeptidase Y folding as well as in glycan modification. There are, however, no significant effects on ER-associated protein degradation in the various protein disulfide isomerase-deleted strains.  相似文献   

20.
The Saccharomyces cerevisiae myosin-V, Myo2p, is essential for polarized growth, most likely through transport of secretory vesicles to the developing bud. Myo2p is also required for vacuole movement, a process not essential for growth. The globular region of the myosin-V COOH-terminal tail domain is proposed to bind cargo. Through random mutagenesis of this globular tail, we isolated six new single point mutants defective in vacuole inheritance, but not polarized growth. These point mutations cluster to four amino acids in an 11-amino acid span, suggesting that this region is important for vacuole movement. In addition, through characterization of myo2-DeltaAflII, a deletion of amino acids 1,459-1,491, we identified a second region of the globular tail specifically required for polarized growth. Whereas this mutant does not support growth, it complements the vacuole inheritance defect in myo2-2 (G1248D) cells. Moreover, overexpression of the myo2-DeltaAflII globular tail interferes with vacuole movement, but not polarized growth. These data indicate that this second region is dispensable for vacuole movement. The identification of these distinct subdomains in the cargo-binding domain suggests how myosin-Vs can move multiple cargoes. Moreover, these studies suggest that the vacuole receptor for Myo2p differs from the receptor for the essential cargo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号