首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autoregulatory feedback loops, where the protein expressed from a gene inhibits or activates its own expression are common gene network motifs within cells. In these networks, stochastic fluctuations in protein levels are attributed to two factors: intrinsic noise (i.e., the randomness associated with mRNA/protein expression and degradation) and extrinsic noise (i.e., the noise caused by fluctuations in cellular components such as enzyme levels and gene-copy numbers). We present results that predict the level of both intrinsic and extrinsic noise in protein numbers as a function of quantities that can be experimentally determined and/or manipulated, such as the response time of the protein and the level of feedback strength. In particular, we show that for a fixed average number of protein molecules, decreasing response times leads to attenuation of both protein intrinsic and extrinsic noise, with the extrinsic noise being more sensitive to changes in the response time. We further show that for autoregulatory networks with negative feedback, the protein noise levels can be minimal at an optimal level of feedback strength. For such cases, we provide an analytical expression for the highest level of noise suppression and the amount of feedback that achieves this minimal noise. These theoretical results are shown to be consistent and explain recent experimental observations. Finally, we illustrate how measuring changes in the protein noise levels as the feedback strength is manipulated can be used to determine the level of extrinsic noise in these gene networks.  相似文献   

2.
Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems.  相似文献   

3.
Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II).  相似文献   

4.
MOTIVATION: It is widely accepted that cell signaling networks have been evolved to be robust against perturbations. To investigate the topological characteristics resulting in such robustness, we have examined large-scale signaling networks and found that a number of feedback loops are present mostly in coupled structures. In particular, the coupling was made in a coherent way implying that same types of feedback loops are interlinked together. RESULTS: We have investigated the role of such coherently coupled feedback loops through extensive Boolean network simulations and found that a high proportion of coherent couplings can enhance the robustness of a network against its state perturbations. Moreover, we found that the robustness achieved by coherently coupled feedback loops can be kept evolutionarily stable. All these results imply that the coherent coupling of feedback loops might be a design principle of cell signaling networks devised to achieve the robustness.  相似文献   

5.
Fluctuations in the copy number of key regulatory macromolecules (“noise”) may cause physiological heterogeneity in populations of (isogenic) cells. The kinetics of processes and their wiring in molecular networks can modulate this molecular noise. Here we present a theoretical framework to study the principles of noise management by the molecular networks in living cells. The theory makes use of the natural, hierarchical organization of those networks and makes their noise management more understandable in terms of network structure. Principles governing noise management by ultrasensitive systems, signaling cascades, gene networks and feedback circuitry are discovered using this approach. For a few frequently occurring network motifs we show how they manage noise. We derive simple and intuitive equations for noise in molecule copy numbers as a determinant of physiological heterogeneity. We show how noise levels and signal sensitivity can be set independently in molecular networks, but often changes in signal sensitivity affect noise propagation. Using theory and simulations, we show that negative feedback can both enhance and reduce noise. We identify a trade-off; noise reduction in one molecular intermediate by negative feedback is at the expense of increased noise in the levels of other molecules along the feedback loop. The reactants of the processes that are strongly (cooperatively) regulated, so as to allow for negative feedback with a high strength, will display enhanced noise.  相似文献   

6.
Regulatory networks controlling bacterial gene expression often evolve from common origins and share homologous proteins and similar network motifs. However, when functioning in different physiological contexts, these motifs may be re-arranged with different topologies that significantly affect network performance. Here we analyze two related signaling networks in the bacterium Bacillus subtilis in order to assess the consequences of their different topologies, with the aim of formulating design principles applicable to other systems. These two networks control the activities of the general stress response factor sigma(B) and the first sporulation-specific factor sigma(F). Both networks have at their core a "partner-switching" mechanism, in which an anti-sigma factor forms alternate complexes either with the sigma factor, holding it inactive, or with an anti-anti-sigma factor, thereby freeing sigma. However, clear differences in network structure are apparent: the anti-sigma factor for sigma(F) forms a long-lived, "dead-end" complex with its anti-anti-sigma factor and ADP, whereas the genes encoding sigma(B) and its network partners lie in a sigma(B)-controlled operon, resulting in positive and negative feedback loops. We constructed mathematical models of both networks and examined which features were critical for the performance of each design. The sigma(F) model predicts that the self-enhancing formation of the dead-end complex transforms the network into a largely irreversible hysteretic switch; the simulations reported here also demonstrate that hysteresis and slow turn off kinetics are the only two system properties associated with this complex formation. By contrast, the sigma(B) model predicts that the positive and negative feedback loops produce graded, reversible behavior with high regulatory capacity and fast response time. Our models demonstrate how alterations in network design result in different system properties that correlate with regulatory demands. These design principles agree with the known or suspected roles of similar networks in diverse bacteria.  相似文献   

7.
Feedback loops play an important role in determining the dynamics of biological networks. To study the role of negative feedback loops, this article introduces the notion of distance-to-positive-feedback which, in essence, captures the number of independent negative feedback loops in the network, a property inherent in the network topology. Through a computational study using Boolean networks, it is shown that distance-to-positive-feedback has a strong influence on network dynamics and correlates very well with the number and length of limit cycles in the phase space of the network. To be precise, it is shown that, as the number of independent negative feedback loops increases, the number (length) of limit cycles tends to decrease (increase). These conclusions are consistent with the fact that certain natural biological networks exhibit generally regular behavior and have fewer negative feedback loops than randomized networks with the same number of nodes and same connectivity.  相似文献   

8.
Chemorepulsion is the process by which an organism or a cell moves in the direction of decreasing chemical concentration. While a few experimental studies have been performed, no mathematical models exist for this process. In this paper we have modelled gradient sensing, the first subprocess of chemorepulsion, in Dictyostelium discoideum-a well characterized model eukaryotic system. We take the first steps towards achieving a comprehensive mechanistic understanding of chemorepulsion in this system. We have used, as a basis, the biochemical network of the Keizer-Gunnink et al. (2007) to develop the mathematical modelling framework. This network describes the underlying pathways of chemorepellent gradient sensing in D. discoideum. Working within this modelling framework we address whether the postulated interactions of the pathways and species in this network can lead to a chemorepulsive response. We also analyse the possible role of additional regulatory effects (such as additional receptor regulation of enzymes in this network) and if this is necessary to achieve this behaviour. Thus we have investigated the receptor regulation of important enzymes and feedback effects in the network. This modelling framework generates important insights into and testable predictions regarding the role of key components and feedback loops in regulating chemorepulsive gradient sensing, and what factors might be important for generating a chemorepulsive response; it serves as a first step towards a comprehensive mechanistic understanding of this process.  相似文献   

9.
《Biophysical journal》2022,121(19):3600-3615
Epithelial-mesenchymal plasticity (EMP) is a key arm of cancer metastasis and is observed across many contexts. Cells undergoing EMP can reversibly switch between three classes of phenotypes: epithelial (E), mesenchymal (M), and hybrid E/M. While a large number of multistable regulatory networks have been identified to be driving EMP in various contexts, the exact mechanisms and design principles that enable robustness in driving EMP across contexts are not yet fully understood. Here, we investigated dynamic and structural robustness in EMP networks with regard to phenotypic heterogeneity and plasticity. We use two different approaches to simulate these networks: a computationally inexpensive, parameter-independent continuous state space Boolean model, and an ODE-based parameter-agnostic framework (RACIPE), both of which yielded similar phenotypic distributions. While the latter approach is useful for measurements of plasticity, the former model enabled us to extensively investigate robustness in phenotypic heterogeneity. Using perturbations to network topology and by varying network parameters, we show that multistable EMP networks are structurally and dynamically more robust compared with their randomized counterparts, thereby highlighting their topological hallmarks. These features of robustness are governed by a balance of positive and negative feedback loops embedded in these networks. Using a combination of the number of negative and positive feedback loops weighted by their lengths, we identified a metric that can explain the structural and dynamical robustness of these networks. This metric enabled us to compare networks across multiple sizes, and the network principles thus obtained can be used to identify fragilities in large networks without simulating their dynamics. Our analysis highlights a network topology-based approach to quantify robustness in the phenotypic heterogeneity and plasticity emergent from EMP networks.  相似文献   

10.
When living systems detect changes in their external environment their response must be measured to balance the need to react appropriately with the need to remain stable, ignoring insignificant signals. Because this is a fundamental challenge of all biological systems that execute programs in response to stimuli, we developed a generalized time-frequency analysis (TFA) framework to systematically explore the dynamical properties of biomolecular networks. Using TFA, we focused on two well-characterized yeast gene regulatory networks responsive to carbon-source shifts and a mammalian innate immune regulatory network responsive to lipopolysaccharides (LPS). The networks are comprised of two different basic architectures. Dual positive and negative feedback loops make up the yeast galactose network; whereas overlapping positive and negative feed-forward loops are common to the yeast fatty-acid response network and the LPS-induced network of macrophages. TFA revealed remarkably distinct network behaviors in terms of trade-offs in responsiveness and noise suppression that are appropriately tuned to each biological response. The wild type galactose network was found to be highly responsive while the oleate network has greater noise suppression ability. The LPS network appeared more balanced, exhibiting less bias toward noise suppression or responsiveness. Exploration of the network parameter space exposed dramatic differences in system behaviors for each network. These studies highlight fundamental structural and dynamical principles that underlie each network, reveal constrained parameters of positive and negative feedback and feed-forward strengths that tune the networks appropriately for their respective biological roles, and demonstrate the general utility of the TFA approach for systems and synthetic biology.  相似文献   

11.
12.
Living organisms often have to adapt to sudden environmental changes and reach homeostasis. To achieve adaptation, cells deploy motifs such as feedback in their genetic networks, endowing the cellular response with desirable properties. We studied the iron homeostasis network of E. coli, which employs feedback loops to regulate iron usage and uptake, while maintaining intracellular iron at non‐toxic levels. Using fluorescence reporters for iron‐dependent promoters in bulk and microfluidics‐based, single‐cell experiments, we show that E. coli cells exhibit damped oscillations in gene expression, following sudden reductions in external iron levels. The oscillations, lasting for several generations, are independent of position along the cell cycle. Experiments with mutants in network components demonstrate the involvement of iron uptake in the oscillations. Our findings suggest that the response is driven by intracellular iron oscillations large enough to induce nearly full network activation/deactivation. We propose a mathematical model based on a negative feedback loop closed by rapid iron uptake, and including iron usage and storage, which captures the main features of the observed behaviour. Taken together, our results shed light on the control of iron metabolism in bacteria and suggest that the oscillations represent a compromise between the requirements of stability and speed of response.  相似文献   

13.
Feedback control, both negative and positive, is a fundamental feature of biological systems. Some of these systems strive to achieve a state of equilibrium or "homeostasis". The major endocrine systems are regulated by negative feedback, a process believed to maintain hormonal levels within a relatively narrow range. Positive feedback is often thought to have a destabilizing effect. Here, we present a "principle of homeostasis," which makes use of both positive and negative feedback loops. To test the hypothesis that this homeostatic concept is valid for the regulation of cortisol, we assessed experimental data in humans with different conditions (gender, obesity, endocrine disorders, medication) and analyzed these data by a novel computational approach. We showed that all obtained data sets were in agreement with the presented concept of homeostasis in the hypothalamus-pituitary-adrenal axis. According to this concept, a homeostatic system can stabilize itself with the help of a positive feedback loop. The brain mineralocorticoid and glucocorticoid receptors-with their known characteristics-fulfill the key functions in the homeostatic concept: binding cortisol with high and low affinities, acting in opposing manners, and mediating feedback effects on cortisol. This study supports the interaction between positive and negative feedback loops in the hypothalamus-pituitary-adrenal system and in this way sheds new light on the function of dual receptor regulation. Current knowledge suggests that this principle of homeostasis could also apply to other biological systems.  相似文献   

14.
15.
16.
17.
A discrete model of a biological regulatory network can be represented by a discrete function that contains all available information on interactions between network components and the rules governing the evolution of the network in a finite state space. Since the state space size grows exponentially with the number of network components, analysis of large networks is a complex problem. In this paper, we introduce the notion of symbolic steady state that allows us to identify subnetworks that govern the dynamics of the original network in some region of state space. We state rules to explicitly construct attractors of the system from subnetwork attractors. Using the results, we formulate sufficient conditions for the existence of multiple attractors resp. a cyclic attractor based on the existence of positive resp. negative feedback circuits in the graph representing the structure of the system. In addition, we discuss approaches to finding symbolic steady states. We focus both on dynamics derived via synchronous as well as asynchronous update rules. Lastly, we illustrate the results by analyzing a model of T helper cell differentiation.  相似文献   

18.
The effects of time delays in a phosphorylation-dephosphorylation pathway   总被引:1,自引:0,他引:1  
Complex signaling cascades involve many interlocked positive and negative feedback loops which have inherent delays. Modeling these complex cascades often requires a large number of variables and parameters. Delay differential equation models have been helpful in describing inherent time lags and also in reducing the number of governing equations. However the consequences of model reduction via delay differential equations have not been fully explored. In this paper we systematically examine the effect of delays in a complex network of phosphorylation-dephosphorylation cycles (described by Gonze and Goldbeter, J. Theor. Biol., 210, (2001) 167-186), which commonly occur in many biochemical pathways. By introducing delays in the positive and negative regulatory interactions, we show that a delay differential model can indeed reduce the number of cycles actually required to describe the phosphorylation-dephosphorylation pathway. In addition, we find some of the unique properties of the network and a quantitative measure of the minimum number of delay variables required to model the network. These results can be extended for modeling complex signalling cascades.  相似文献   

19.
Biological systems are characterized by a high number of interacting components. Determining the role of each component is difficult, addressed here in the context of biological oscillations. Rhythmic behavior can result from the interplay of positive feedback that promotes bistability between high and low activity, and slow negative feedback that switches the system between the high and low activity states. Many biological oscillators include two types of negative feedback processes: divisive (decreases the gain of the positive feedback loop) and subtractive (increases the input threshold) that both contribute to slowly move the system between the high- and low-activity states. Can we determine the relative contribution of each type of negative feedback process to the rhythmic activity? Does one dominate? Do they control the active and silent phase equally? To answer these questions we use a neural network model with excitatory coupling, regulated by synaptic depression (divisive) and cellular adaptation (subtractive feedback). We first attempt to apply standard experimental methodologies: either passive observation to correlate the variations of a variable of interest to system behavior, or deletion of a component to establish whether a component is critical for the system. We find that these two strategies can lead to contradictory conclusions, and at best their interpretive power is limited. We instead develop a computational measure of the contribution of a process, by evaluating the sensitivity of the active (high activity) and silent (low activity) phase durations to the time constant of the process. The measure shows that both processes control the active phase, in proportion to their speed and relative weight. However, only the subtractive process plays a major role in setting the duration of the silent phase. This computational method can be used to analyze the role of negative feedback processes in a wide range of biological rhythms.  相似文献   

20.
Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

Electronic supplementary material

The online version of this article (doi:10.1007/s11693-015-9178-6) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号