首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In assessing the role that atrial natriuretic peptide (ANP) might have in the homeostasis of fluid volume and blood pressure, it is important to define the physiological and pathophysiological conditions that determine its release into the circulation. There is substantial evidence that ANP is released through atrial distension under a variety of conditions. There are also some indications that ANP may be released through humoral factors, although it is not clear whether this is a result of direct action on the myocytes or simply a result of ensuing haemodynamic changes. There is no evidence to suggest that ANP can be released through stimulation of efferent fibres innervating the atria, but it may be released as a result of changes in myocardial work and oxygen consumption. Plasma levels of ANP are elevated in several disease states and that release appears to be a result of the haemodynamic disturbances in those conditions.  相似文献   

2.
3.
Recently we reported the presence of both the guanylyl cyclase-linked (116 kDa) and the ANF-C (66 kDa) atrial natriuretic peptide receptors in the rat liver. Since ANF 103-125 (atriopeptin II) stimulates cGMP production in livers and because cGMP has previously been shown to mimic the actions of cAMP in regulating hepatic carbohydrate metabolism, studies were performed to investigate the effects of atriopeptin II on hepatic glycolysis and gluconeogenesis. Additionally, employing analogs of atrial natriuretic hormone [des-(Q116, S117, G118, L119, G120) ANF 102-121 (C-ANF) and des-(C105,121) ANF 104-126 (analog I)] which bind only the ANF-C receptors, the role of the ANF-C receptors in the hepatic actions of atriopeptin II was evaluated. In perfused livers of fed rats atriopeptin II, but not C-ANF and analog I, inhibited hepatic glycolysis and stimulated glucose production. Moreover, analog I did not alter the ability of atriopeptin II to inhibit hepatic glycolysis. Atriopeptin II, but not C-ANF and analog I, also stimulated cGMP production in perfused rat livers. Furthermore, while atriopeptin II inhibited the activity ratio of pyruvate kinase by 30%, C-ANF did not alter hepatic pyruvate kinase activity. Finally, in rat hepatocytes, atriopeptin II stimulated the synthesis of [14C]glucose from [2-14C]pyruvate by 50% and this effect of atriopeptin II was mimicked by the exogenously supplied cGMP analog, 8-bromo cGMP. Thus atriopeptin II increases hepatic gluconeogenesis and inhibits glycolysis, in part by inhibiting pyruvate kinase activity, and the effects of atriopeptin II are mediated via activation of guanylyl cyclase-linked ANF receptors which elevate cGMP production.  相似文献   

4.
To test the hypothesis that reduced oxygen tension stimulates cardiac atrial natriuretic peptide (ANP) secretion, we measured ANP release and expression in neonatal rat atrial and ventricular cardiac myocytes exposed to 45 min and 3, 6, and 24 hr of 3% or 21% oxygen. In atrial cardiocytes, the percentage of increase in culture media ANP concentration from baseline was greater in cells exposed to 3% than in cells exposed to 21% oxygen after 3 hr (814% +/- 52% vs. 567% +/- 33%, P < 0.05) and 6 hr of exposure (1639% +/- 91% vs. 1155% +/- 73%, P < 0.05). No differences in the percentage of increase in culture media ANP concentration was seen at 45 min (284% +/- 27% vs. 201% +/- 16%, P = NS) or 24 hr (2499% +/- 250% vs. 2426% +/- 195%). There was a significant increase in cellular ANP content between 3 and 24 hr in atrial cardiocytes exposed to 21% oxygen (105% +/- 40% vs. 296% +/- 60%, P < 0.05), but not in atrial cardiocytes exposed to 3% oxygen (118% +/- 20% vs. 180% +/- 26%, P = NS). Steady-state ANP mRNA levels in atrial cardiocytes were not affected by oxygen tension. In ventricular cardiocytes, oxygen tension did not affect ANP secretion, cellular ANP content, or steady-state ANP mRNA levels. We conclude that reduced oxygen tension increases release of ANP from atrial, but not ventricular cardiocytes and that this mechanism may contribute to the elevation in plasma ANP seen during acute hypoxia.  相似文献   

5.
6.
Incubation of spontaneously beating ventricular cardiomyocytes from neonatal rats with prostaglandin E(2) (0.1 microM) or forskolin (0.1 microM) simultaneously increased the rate of cellular contraction and atrial natriuretic peptide (ANP) secretion. Both responses were maximal within 10-20 min of application and were accompanied by three- to fourfold increases in cAMP formation. By contrast, a higher regimen of forskolin (10 microM) promoted a 20- to 30-fold increase in basal cAMP production, which was accompanied by the abolition of contractile activity and ANP release. Low regimens of forskolin (0.1 microM) doubled the occurrence of cytosolic Ca(2+) transients associated with monolayer contraction, whereas higher regimens of forskolin (10 microM) completely suppressed Ca(2+) transients. Moreover, in quiescent cultures that were pretreated with ryanodine, tetrodotoxin, nifedipine, or butanedione monoxime, prostaglandin E(2) (0.1 microM) and forskolin (0.1 microM) failed to elicit significant ANP secretion, suggesting that cAMP-elevating agents promote ANP secretion to a great extent via an increase in cellular contraction frequency in ventricular cardiomyocytes.  相似文献   

7.
The factors associated with the exercise-induced increase in plasma atrial natriuretic peptide (ANP) have not been clearly established. Thus the purpose of the study was to further document the stimulus for the exercise-induced release of ANP and to examine the role of ANP in the control of hydromineral balance during exercise. Eight healthy male volunteers (25.1 +/- 4.5 yr) were submitted to a graded cycling exercise in both the upright and supine positions. Venous blood was sampled at rest and at the end of each 5-min work load at 40, 60, and 80% maximal oxygen uptake (Vo2max), at maximal exercise, and during recovery through an indwelling catheter for the determination of plasma vasopressin, aldosterone, catecholamines, plasma renin activity, and ANP concentrations. Results indicate a significant increase in ANP (pg/ml) from rest to maximal exercise in the upright position [rest, 21.9 +/- 10.2; 40%, 24.7 +/- 12.6; 60%, 32.4 +/- 17*; 80%, 47.8 +/- 27.7*; 100% Vo2max, 65.9 +/- 34.5* (*P less than or equal to 0.05)]. Supine concentrations were significantly higher than upright at 40 (37.9 +/- 15.2), 60 (54.0 +/- 18.8), and 80% Vo2max (68.9 +/- 16.6). Plasma ANP during maximal exercise was similar in both positions. Plasma vasopressin, aldosterone, renin activity, and catecholamines increased with increasing exercise intensity in both positions, although lower values were systematically observed in the supine position. The association of higher plasma ANP and blunted plasma vasopressin, plasma renin activity, and norepinephrine concentrations during supine exercise suggests that ANP may exert modulatory effects on the control of the hydromineral hormonal system during exercise.  相似文献   

8.
Effects of atrial natriuretic peptide (ANP) on renin release in isolated rat glomeruli were investigated. ANP suppressed renin release by 25% at 5 x 10(-8) M when glomeruli were incubated in a medium containing 1.26 mM calcium (p = 0.0019). When glomeruli were incubated in a calcium free medium containing 2 mM EGTA, ANP suppressed stimulated renin release significantly at 5 x 10(-8) and 5 x 10(-9) M by 25% (p = 0.0204, and p = 0.0101, respectively). These results indicate that ANP suppresses renin release in a dose dependent manner, probably through a calcium independent process.  相似文献   

9.
10.
In 12 chloralose anaesthetized dogs plasma concentration of immunoreactive atrial natriuretic peptide (IR-ANP) was measured using a radioimmunoassay. Plasma IR-ANP was 74 +/- 4.8 pg/mL (mean +/- SE) and increased by 39 +/- 4.1 pg/mL when left atrial pressure was increased by 10 cm H2O during partial mitral obstruction. Observation of the time course of the changes in IR-ANP during atrial distension showed that IR-ANP was increased within 2 min of atrial distension and declined after atrial distension, with a half-time of 4.5 min. The time course of the changes in IR-ANP was unaffected by vagotomy or administration of atenolol. Maximum electrical stimulation of the right ansa subclavia failed to produce any change in IR-ANP. IR-ANP was higher in coronary sinus plasma than in femoral arterial plasma confirming that the heart was the source of the IR-ANP. The results support the hypothesis that IR-ANP is released from the heart by a direct effect of stretch of the atrial wall rather than by a neural or humoral mechanism involving a reflex from atrial receptors.  相似文献   

11.
Atrial cardiomyocytes, neurons, and endocrine tissues secrete neurotransmitters and peptide hormones via large dense-core vesicles (LDCVs). We describe a new member of the Ras family of G-proteins, named RRP17, which is expressed specifically in cardiomyocytes, neurons, and the pancreas. RRP17 interacts with Ca(2+)-activated protein for secretion-1 (CAPS1), one of only a few proteins known to be associated exclusively with LDCV exocytosis. Ectopic expression of RRP17 in cardiomyocytes enhances secretion of atrial natriuretic peptide (ANP), a regulator of blood pressure and natriuresis. Conversely, genetic deletion of RRP17 in mice results in dysmorphic LDCVs, impaired ANP secretion, and hypertension. These findings identify RRP17 as a component of the cellular machinery involved in regulated secretion within the heart and potential mediator of the endocrine influence of the heart on other tissues.  相似文献   

12.
The effects of passive heat exposure on atrial natriuretic peptide (ANP) were studied in six healthy men staying in a Finnish sauna at +92 degrees C for 20 min. Their rectal temperature increased by 0.4 degrees C, and evaporative water loss was 0.92 +/- 0.14 (SD) kg. Heart rate and systolic blood pressure increased significantly during the 20-min exposure. Serum osmolality and plasma arginine vasopressin levels increased during the exposure, then declined, and increased significantly again at 90-120 min. Plasma renin activity and aldosterone increased by two- to fourfold in 20 min. Plasma ANP levels rose from 13 +/- 7 to 39 +/- 15 ng/l at 60 min and to 41 +/- 13 ng/l at 120 min (P less than 0.01 for both). We conclude that transient increases in heart rate and systolic blood pressure or changes in blood volume as inferred from the weight loss do not contribute to the increased plasma ANP levels observed after the heat exposure. Instead, increased secretions of pressor hormones could explain the elevated plasma ANP levels observed after the thermal stress.  相似文献   

13.
14.
In isolated rat atria a 10 degrees C increase in temperature approximately doubled the output of atrial natriuretic peptide during relaxation and stretch. The effect was not due to the increased rate of contraction. Increasing the osmolality of the superfusate within the physiological range (290 to 320 m osmols) with sodium, potassium or glucose had no appreciable effect on the release of atrial natriuretic peptide.  相似文献   

15.
In an attempt to investigate their relationships with plasma volume (PV), heart rate (HR), and other hormonal systems, plasma atrial natriuretic peptide (ANP) levels were determined in response to exercise in the heat, associated with dehydration and rehydration with various fluids. Five normal subjects underwent four 3-h experiments, in a 36 degree C environment, in which 25-min exercise periods on a cycle ergometer at 90 W alternate with 5-min rest periods. Blood samples were collected hourly and ANP, arginine vasopressin (AVP), adrenocorticotropin (ACTH), and cortisol were analyzed in four experimental sessions: without fluid supplement (DH) and with progressive rehydration either with water (W), acid isotonic solution (AISO), or neutral isotonic solution (NISO). Exercise in the heat, accompanied by a decrease in PV and an increase in osmolality, elicited an increase of 28 +/- 1.6 pg/ml in plasma ANP, with concomitant increases in AVP (5.1 +/- 1.4 pg/ml), ACTH (49.6 +/- 12.3 pg/ml), and cortisol (8.4 +/- 2.0 micrograms/100 ml). Progressive rehydration maintained PV and blunted ANP, AVP, ACTH, and cortisol responses. These results demonstrate the importance of rehydration, during exercise in a warm environment, in preventing hormonal increases. They suggest that under our conditions, the PV changes and the inferred atrial pressure changes may not be the primary factors controlling ANP release, as under other physiological conditions. The exercise-related activation of pituitary and adrenals and the stimulation of HR counteract the influence of PV changes due to vascular fluid shifts.  相似文献   

16.
The natriuretic peptides are believed to play an important role in the pathophysiology of congestive heart failure (CHF). We utilized a quantitative cytomorphometric method, using double immunocytochemical labeling, to assess the characteristics of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in atrial granules in an experimental model of rats with CHF induced by aortocaval fistula. Rats with CHF were further divided into decompensated (sodium-retaining) and compensated (sodium-excreting) subgroups and compared with a sham-operated control group. A total of 947 granules in myocytes in the right atrium were analyzed, using electron microscopy and a computerized analysis system. Decompensated CHF was associated with alterations in the modal nature of granule content packing, as depicted by moving bin analysis, and in the granule density of both peptides. In control rats, the mean density of gold particles attached to both peptides was 347.0 +/- 103.6 and 306.3 +/- 89.9 gold particles/microm2 for ANP and BNP, respectively. Similar mean density was revealed in the compensated rats (390.6 +/- 81.0 and 351.3 +/- 62.1 gold particles/microm2 for ANP and BNP, respectively). However, in rats with decompensated CHF, a significant decrease in the mean density of gold particles was observed (141.6 +/- 67.3 and 158.0 +/- 71.2 gold particles/microm2 for ANP and BNP, respectively; p<0.05 compared with compensated rats, for both ANP and BNP). The ANP:BNP ratio did not differ between groups. These findings indicate that the development of decompensated CHF in rats with aortocaval fistula is associated with a marked decrease in the density of both peptides in atrial granules, as well as in alterations in the quantal nature of granule formation. The data further suggest that both peptides, ANP and BNP, may be regulated in the atrium by a common secretory mechanism in CHF.  相似文献   

17.
18.
We investigated the effect of the intravenous infusion of atrial natriuretic peptide (ANP) on the response of plasma arginine vasopressin (AVP) levels to intravenous infusion of angiotensin II (ANG II) in healthy individuals. Intravenous infusion of ANP (10 ng·kg(-1)·min(-1)) slightly but significantly decreased plasma AVP levels, while intravenous infusion of ANG II (10 ng·kg(-1)·min(-1)) resulted in slightly increased plasma AVP levels. ANG II infused significant elevations in arterial blood pressure and central venous pressure (CVP). Because the elevation in blood pressure could have potentially inhibited AVP secretion via baroreceptor reflexes, the effect of ANG II on blood pressure was attenuated by the simultaneous infusion of nitroprusside. ANG II alone produced a remarkable increase in plasma AVP levels when infused with nitroprusside, whereas the simultaneous ANP intravenous infusion (10 ng·kg(-1)·min(-1)) abolished the increase in plasma AVP levels induced by ANG II when blood pressure elevation was attenuated by nitroprusside. Thus, ANG II increased AVP secretion and ANP inhibited not only basal AVP secretion but also ANG II-stimulated AVP secretion in humans. These findings support the hypothesis that circulating ANP modulates AVP secretion, in part, by antagonizing the action of circulating ANG II.  相似文献   

19.
The effect of ischemia on atrial natriuretic peptide (ANP) release from heart ventricles was studied by exposing the perfused hearts of Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats to global ischemia after excision of the atria. Ischemia for 2, 5 and 20 min caused an increase of 0.3 +/- 1.1, 12.4 +/- 5.5 and 11.4 +/- 4.2 ng/g dry weight in ANP release of the WKY ventricles, respectively. ANP release increased 3.4 +/- 2.8 ng/g dry weight after 5 minutes' ischemia from the SHR ventricles. The increase was not caused by cell damage, as only processed form of the peptide was detected in the perfusates. The increase in ANP release in the WKY ventricles correlated positively with the tissue lactate/pyruvate ratio (r = 0.85) and adenosine (r = 0.99), and negatively with the phosphorylation potential (r = -0.70). The results indicate that ventricular ischemia increases ANP release, probably due to changes in myocardial energy metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号