首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
In isolated Acanthamoeba castellanii mitochondria respiring in state 3 with external NADH or succinate, the linoleic acid-induced purine nucleotide-sensitive uncoupling protein activity is able to uncouple oxidative phosphorylation. The linoleic acid-induced uncoupling can be inhibited by a purine nucleotide (GTP) when quinone (Q) is sufficiently oxidized, indicating that in A. castellanii mitochondria respiring in state 3, the sensitivity of uncoupling protein activity to GTP depends on the redox state of the membranous Q. Namely, the inhibition of the linoleic acid-induced uncoupling by GTP is not observed in uninhibited state 3 respiration as well as in state 3 respiration progressively inhibited by complex III inhibitors, i.e., when the rate of quinol (QH2)-oxidizing pathway is decreased. On the contrary, the progressive decrease of state 3 respiration by declining respiratory substrate availability (by succinate uptake limitation or by decreasing external NADH concentration), i.e., when the rate of Q-reducing pathways is decreased, progressively leads to a full inhibitory effect of GTP. Moreover, in A. castellanii mitochondria isolated from cold-treated cells, where a higher uncoupling protein activity is observed, the inhibition of the linoleic acid-induced proton leak by GTP is revealed for the same low values of the Q reduction level.  相似文献   

2.
Abstract: When rat brain mitochondria are incubated with [γ-32P]ATP, there is a rapid (10 s) phosphorylation of proteins designated E, and F of M.W. 42,000 and 32,000, respectively. Although [γ-32P]ATP was the preferred substrate for protein F, a small amount of labeling did occur with [γ-32P]GTP. Phosphorylation of E1 was absolutely ATP-dependent. On the other hand, a 32,000 M.W. protein from rat liver mitoplasts (mitochondria devoid of an outer membrane) was highly phosphorylated when [γ-32P]GTP was used but not at all phosphorylated within short time periods with [γ-32P]ATP. Both the ATP-labeled brain phosphoprotein F and GTP-labeled liver protein migrated to identical positions on high-resolution two-dimensional polyacrylamide gels, and both contained acid-labile phosphoryl groups. Furthermore, both phosphoproteins were identified as the autophosphorylated subunit of succinyl-CoA synthetase (SCS, EC 6.2.1.4) by using antibody directed against purified GTP-dependent porcine SCS. However, immunotitration experiments with anti-porcine SCS revealed that ATP- and GTP-labeled protein F in brain differed in their interactions with antibody, suggesting that in rat brain mitochondria two different forms of the enzyme exist that are immunologically distinct and differ in substrate specificity. When mitochondrial preparations enriched in particular brain cell or subcellular types were examined, an unequal distribution of E1 and the two forms of protein F were observed. A brain subfraction containing neuronal cell body and glial mitochondria (CM) was found to contain E1 and approximately equal amounts of the ATP- and GTP-dependent forms of protein F. Light synaptic mitochondria(SM1) contained ATP-dependent protein F almost exclusively and were depleted in E1. Dense synaptic mitochondria (SM2) are rich in the ATP form of SCS but also contain low amounts of the GTP enzyme.  相似文献   

3.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号