首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The four major surface antigens of Toxoplasma gondii tachyzoites (P43, P35, P30, and P22) were made water soluble by phosphatidylinositol-specific phospholipase C (PI-PLC). These antigens were biosynthetically labeled with 3H-fatty acids, [3H]ethanolamine, and [3H]carbohydrates. Treatment of 3H-fatty-acid-labeled parasite lysates with PI-PLC removed the radioactive label from these antigens. A cross-reacting determinant was exposed on these antigens after PI-PLC treatment.  相似文献   

2.
Membrane-associated decay accelerating factor (DAF) of human erythrocytes (Ehu) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the Ehu acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact Ehu with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated from urine. Nitrous acid deamination cleavage of Ehu DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) released the [125I]TID label in a parallel fashion as from [125I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [3H]ethanolamine resulted in rapid 3H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. Our findings indicate that DAF and AChE are anchored in Ehu by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi.  相似文献   

3.
Biosynthetic labelling experiments performed on P primaurelia strain 156, expressing the temperature-specific G surface antigen, 156G SAg, demonstrated that the purified 156G SAg contained the components characteristic of a GPI-anchor. [3H]ethanolamine, [3H]myo-inositol, [32P]phosphoric acid and [3H]myristic acid could all be incorporated into the surface antigen. Myristic acid labelling was lost after treatment in vitro with Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC). After complete digestion by pronase, a fragment containing the intact GPI-anchor of 156G surface antigen was isolated. This fragment was shown to be hydrophobic and glycosylated and to possess an epitope found specifically in the GPI component of GPI-anchored proteins. The role of the GPI-tail in anchoring the 156G surface antigen into the membrane was assessed by determining that purified 156G molecules with the GPI-anchor could be incorporated into lipid vesicles and red cell ghosts whereas the 156G molecules lacking the GPI-anchor, as result of treatment with B thuringiensis PI-PLC, could not. It has also been shown that the membrane-bound form and the soluble form, obtained after cleavage of the 156G SAg lipid moiety either by an endogenous PI-PLC or by a bacterial PI-PLC, displayed identical circular dichroic spectra.  相似文献   

4.
The glycosylphosphatidylinositol (GPI)-anchor of the plasma membrane-associated heparan sulfate (HS) proteoglycan was metabolically radiolabeled with [3H]myristic acid, [3H]palmitic acid, [3H]inositol, [3H]ethanolamine, or [32P]phosphate in rat ovarian granulosa cell culture. Cell cultures labeled with [3H]myristic acid or [3H]palmitic acid were extracted with 4 M guanidine HCl buffer containing 2% Triton X-100 and the proteoglycans were purified by ion exchange chromatography after extensive delipidation. Specific incorporation of 3H into GPI-anchor was demonstrated by removing the label with a phosphatidylinositol-specific phospholipase C (PI-PLC). Incorporation of 3H activity into glycosaminoglycans and core glycoproteins was also demonstrated. However, the specific activity of 3H in these structures was approximately 2 orders of magnitude lower than that in the GPI-anchor, suggesting that 3H label was the result of the metabolic utilization of catabolic products of the 3H-labeled fatty acids. PI-PLC treatment of cell cultures metabolically labeled with [3H]inositol, [3H]ethanolamine, or [32P]phosphate specifically released radiolabeled cell surface-associated HS proteoglycans indicating the presence of GPI-anchor in these proteoglycans. GPI-anchored HS proteoglycans accounted for 20-30% of the total cell surface-associated HS proteoglycans and virtually all of them were removed by PI-PLC. These results further substantiate the presence of GPI-anchored heparan sulfate proteoglycan in ovarian granulosa cells and its cell surface localization.  相似文献   

5.
The major surface antigen of the mammalian bloodstream form of Trypanosoma brucei, the variant surface glycoprotein (VSG), is attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. The VSG anchor is susceptible to phosphatidylinositol-specific phospholipase C (PI-PLC). Candidate precursor glycolipids, P2 and P3, which are PI-PLC-sensitive and -resistant respectively, have been characterized in the bloodstream stage. In the insect midgut stage, the major surface glycoprotein, procyclic acidic repetitive glycoprotein, is also GPI-anchored but is resistant to PI-PLC. To determine how the structure of the GPI anchor is altered at different life stages, we characterized candidate GPI molecules in procyclic T. brucei. The structure of a major procyclic GPI, PP1, is ethanolamine-PO4-Man alpha 1-2Man alpha 1-6 Man alpha 1-GlcN-acylinositol, linked to lysophosphatidic acid. The inositol can be labeled with [3H]palmitic acid, and the glyceride with [3H]stearic acid. We have also found that all detectable ethanolamine-containing GPIs from procyclic cells contain acylinositol and are resistant to cleavage by PI-PLC. This suggests that the procyclic acidic repetitive glycoprotein GPI anchor structure differs from that of the VSG by virtue of the structures of the GPIs available for transfer.  相似文献   

6.
Phosphatidylinositol anchor of HeLa cell alkaline phosphatase   总被引:7,自引:0,他引:7  
R Jemmerson  M G Low 《Biochemistry》1987,26(18):5703-5709
Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either 3H-fatty acids or [3H]ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the 3H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of [3H]ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from 3H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the 3H-fatty acid and the [3H]ethanolamine label from the purified alkaline phosphatase. Subtilisin was also able to remove the [3H]ethanolamine-labeled from purified alkaline phosphatase. The 3H radioactivity in alkaline phosphatase purified from [3H]ethanolamine-labeled cells comigrated with authentic [3H]ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the 3H-fatty acid and [3H]ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.  相似文献   

7.
Using hypotonically permeabilized Toxoplasma gondii tachyzoites, we investigated the topology of the free glycosylphosphatidylinositols (GPIs) within the endoplasmic reticulum (ER) membrane. The morphology and permeability of parasites were checked by electron microscopy and release of a cytosolic protein. The membrane integrity of organelles (ER and rhoptries) was checked by protease protection assays. In initial experiments, GPI biosynthetic intermediates were labeled with UDP-[6-(3)H]GlcNAc in permeabilized parasites, and the transmembrane distribution of the radiolabeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). A new early intermediate with an acyl modification on the inositol was identified, indicating that inositol acylation also occurs in T. gondii. A significant portion of the early GPI intermediates (GlcN-PI and GlcNAc-PI) could be hydrolyzed following PI-PLC treatment, indicating that these glycolipids are predominantly present in the cytoplasmic leaflet of the ER. Permeabilized T. gondii parasites labeled with either GDP-[2-(3)H]mannose or UDP-[6-(3)H]glucose showed that the more mannosylated and side chain (Glc-GalNAc)-modified GPI intermediates are also preferentially localized in the cytoplasmic leaflet of the ER.  相似文献   

8.
A common diagnostic feature of glycosylinositol phospholipid (GPI)-anchored proteins is their release from the membrane by a phosphatidylinositol-specific phospholipase C (PI-PLC). However, some GPI-anchored proteins are resistant to this enzyme. The best characterized example of this subclass is the human erythrocyte acetylcholinesterase, where the structural basis of PI-PLC resistance has been shown to be the acylation of an inositol hydroxyl group(s) (Roberts, W. L., Myher, J. J., Kuksis, A., Low, M. G., and Rosenberry, T. L. (1988) J. Biol. Chem. 263, 18766-18775). Both PI-PLC-sensitive and resistant GPI-anchor precursors (P2 and P3, respectively) have been found in Trypanosoma brucei, where the major surface glycoprotein is anchored by a PI-PLC-sensitive glycolipid anchor. The accompanying paper (Mayor, S., Menon, A. K., Cross, G. A. M., Ferguson, M. A. J., Dwek, R. A., and Rademacher, T. W. (1990) J. Biol. Chem. 265, 6164-6173) shows that P2 and P3 have identical glycans, indistinguishable from the common core glycan found on all the characterized GPI protein anchors. This paper shows that the single difference between P2 and P3, and the basis for the PI-PLC insusceptibility of P3, is a fatty acid, ester-linked to the inositol residue in P3. The inositol-linked fatty acid can be removed by treatment with mild base to restore PI-PLC sensitivity. Biosynthetic labeling experiments with [3H]palmitic acid and [3H]myristic acid show that [3H]palmitic acid specifically labels the inositol residue in P3 while [3H]myristic acid labels the diacylglycerol portion. Possible models to account for the simultaneous presence of PI-PLC-resistant and sensitive glycolipids are discussed in the context of available information on the biosynthesis of GPI-anchors.  相似文献   

9.
This study identifies and partially characterizes an insulin-sensitive glycophospholipid in H35 hepatoma cells. The incorporation of [3H]glucosamine into cell lipids was investigated. A major labeled lipid was purified by sequential thin layer chromatography using first an acid followed by a basic solvent system. After hydrochloric acid hydrolysis and sugar analysis by thin layer chromatography, 80% of the radioactivity in the purified lipid was found to comigrate with glucosamine. H35 cells were prelabeled with [3H]glucosamine for either 4 or 24 h and treated with insulin causing a dose-dependent stimulation of turnover of the glycophospholipid which was detected within 1 min. The purified glycolipid was cleaved by nitrous acid deamination indicating that the glucosamine C-1 was linked to the lipid moiety through a glycosidic bond. [14C]Ethanolamine, [3H]inositol, and [3H]sorbitol were not incorporated into the purified glycolipid. The incorporation of various fatty acids into this glycolipid was also studied. [3H]Palmitate was found to be preferentially incorporated while myristic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid were either not incorporated or incorporated less than 10% of palmitate. The purified glycolipid labeled with [3H]palmitate was cleaved by treatment with phospholipase A2 but was resistant to mild alkali hydrolysis suggesting the presence of a 1-hexadecyl,2-palmitoyl-glyceryl moiety in the purified lipid. Treatment of labeled glycophospholipid with phosphatidylinositol-specific phospholipase C from Staphylococcus aureus generated a compound migrating as 1-alkyl,2-acyl-glycerol and a polar head group with a size in the range from 800 to 3500. These findings coupled with the nitrous acid deamination demonstrate that glucosamine was covalently linked through a phosphodiester bond to the glyceryl moiety of the purified glycolipid. These findings suggest that insulin acts on this glycophospholipid by stimulating an insulin-sensitive phospholipase C. This unique glycophospholipid may play an important role in insulin action by serving as precursor of insulin-generated mediators.  相似文献   

10.
Four major glycolipids were extracted from Toxoplasma gondii tachyzoites which were metabolically labeled with tritiated glucosamine, mannose, palmitic and myristic acid, ethanolamine, and inositol. Judging from their sensitivity to a set of enzymatic and chemical tests, these glycolipids share the following properties with the glycolipid moiety of the glycosylphosphatidylinositol anchor (GPI anchor) of the major surface protein, P30, of T. gondii: 1) a nonacetylated glucosamine-inositol phosphate linkage; 2) sensitivity toward phosphatidylinositol-specific phospholipase C and nitrous acid; 3) identity of HF-dephosphorylated GPI glycan backbone between three glycolipids and the HF-dephosphorylated core glycan of the GPI anchor of the major surface protein P30; 4) the presence of a linear core glycan structure blocked by an ethanolamine phosphate residue(s). Taken together with the nature of radiolabeled precursors incorporated into these glycolipids, the data indicate that these GPIs are involved in the biosynthesis of the GPI-membrane anchors of T. gondii.  相似文献   

11.
Phosphatidylinositol (PI)-linked forms of surface molecules have been hypothesized to mediate the initial stages of cell adhesion or signal transduction. We report evidence for the occurrence of a functional PI-linked subset of cell surface fibronectin receptors (FNR). Treatment of human MG63 osteosarcoma cells or primary chicken embryo fibroblasts (CEF) with PI-specific phospholipase C (PI-PLC) reduced cell surface FNR expression by 30% as detected by immunofluorescence. PI-PLC treatment of cell membranes purified from [35S]methionine-labeled CEF or MG63 cells led to a similar loss of membrane-associated immunoprecipitable FNR from the pelleted membranes, while such treatment led to the appearance of FNR in the supernatant of treated MG63 membranes. Biosynthetic labeling of CEF FNR with [3H]palmitate and [3H]ethanolamine demonstrated the acylation and putative PI linkage of avian FNR subunits. PI-PLC treatment of CEF and MG63 cells also reduced fibronectin-specific adhesion in a short-term in vitro assay, suggesting that the avian and human FNR occur in PI-linked isoforms which appear to contribute to cell adhesion to fibronectin.  相似文献   

12.
Since Giardia lamblia trophozoites are exposed to high concentrations of fatty acids in their human small intestinal milieu, we determined the pattern of incorporation of [3H]palmitic acid and myristic acid into G. lamblia proteins. The pattern of fatty acylation was unusually simple since greater than 90% of the Giardia protein biosynthetically labeled with either [3H]palmitate or myristate migrated at approximately 49 kDa (GP49) in reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis during both growth and differentiation. GP49, which partitions into the Triton X-114 detergent phase, is localized on the cell surface since it is 125I-surface-labeled. GP49 was also biosynthetically labeled with [14C]ethanolamine and [3H]myoinositol, suggesting that it has a glycosylphosphatidylinositol (GPI) anchor. Moreover, phospholipase A2 (PLA2) or mild alkaline treatment released free fatty acids, indicating a diacylglycerol moiety with ester linkages. Finally, a 3H- and 14C-labeled species was released by nitrous acid deamination from [14C]palmitate- and [3H]myoinositol-labeled GP49. The GPI anchor of GP49 is unusual, however, because purified GP49 was cleaved by Bacillus cereus phosphatidylinositol (PI)-specific PLC, but not by Staphylococcus aureus PI-PLC, or plasma PLD, and did not react with antibody against the variant surface glycoprotein cross-reactive determinant. Moreover, the double-labeled deaminated GP49 anchor migrated faster than authentic PI in TLC and produced [3H]glycerophosphoinositol after deacylation. In contrast to the variable cysteine-rich G. lamblia surface antigens described previously, GP49 was identified in Western blots of every isolate tested, as well as in subclones of a single isolate which differ in expression of a major cysteine-rich 85/66-kDa surface antigen, which does not appear to be GPI-anchored. These observations suggest that GP49, the first common surface antigen to be described in G. lamblia, may play an important role in the interaction of this parasite with its environment.  相似文献   

13.
Glycosyl phosphoinositol (GPI) anchors on proteins can be modified by palmitoylation of their inositol residue, which makes such anchors resistant to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC) (Roberts, W. L., Myher, J. J., Kuksis, A., Low, M. G., and Rosenberry, T.L. (1988) J. Biol. Chem. 263, 18766-18775). Mannosylated GPI lipids made in trypanosomal and mammalian cells can also be inositol-acylated, indicating that inositol acylation may be a normal step in GPI anchor synthesis. We find that Saccharomyces cerevisiae mutants blocked in dolichyl phosphate mannose synthesis accumulate a lipid that can be radiolabeled in vivo with [3H]myo-inositol, [3H]GlcN, and [3H]palmitic acid. This lipid is resistant to PI-PLC, yet sensitive to mild alkaline hydrolysis, and has been characterized as GlcN-phosphatidylinositol (PI), fatty acylated on its inositol residue. When yeast membranes are incubated with UDP-[14C] GlcNAc, 14C-labeled GlcNAc-PI and GlcN-PI are made. Addition of ATP and CoA, or of palmitoyl-CoA to incubations results in the synthesis of [14C]GlcN-(acyl-inositol)PI. This lipid is also made when membranes are incubated with [1-14C]palmitoyl-CoA and UDP-GlcNAc. We propose that acyl CoA is the donor in inositol acylation of GlcN-PI, and that GlcN-(acyl-inositol)PI is an obligatory intermediate in GPI synthesis.  相似文献   

14.
An arginine-specific ADP-ribosyltransferase activity was detected in chicken gizzard smooth muscle, and the specific activity is highest in the membrane fraction. This transferase is released from the membrane fraction by phosphatidylinositol-specific phospholipase C (PI-PLC), suggesting that it is a glycosylphosphatidylinositol (GPI)-anchored protein. When primary cultured gizzard smooth muscle cells (SMCs) were incubated with [adenylate-(32)P]NAD, several proteins were labeled. The labeling was inhibited by preincubation of the cells with PI-PLC, or by the addition of L-arginine to the reaction, and was sensitive to hydroxylamine treatment. The activity of the transferase was maintained in differentiated SMCs cultured with insulin, but was dramatically decreased concomitantly with cell dedifferentiation induced by serum or a specific PI3-kinase inhibitor, LY294002. These results indicate that the GPI-anchored arginine-specific ADP-ribosyltransferase is expressed on the surface of differentiated SMCs and can modify several cell surface proteins. Our results also suggest that PI3-kinase is involved in the regulation of transferase activity during differentiation.  相似文献   

15.
The variant surface glycoprotein (VSG) of Trypanosoma brucei has a glycolipid covalently attached to its C terminus. This glycolipid, which anchors the protein to the cell membrane, is attached to the VSG polypeptide within 1 min after translation (Bangs, J. D. Hereld, D., Krakow, J.L., Hart, G. W., and Englund, P. T. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3207-3211). This rapid processing suggests that, prior to incorporation, the glycolipid may exist in the cell as a preformed precursor which is transferred to the VSG polypeptide en bloc. We have isolated a molecule which has properties consistent with it being a VSG glycolipid precursor. It is highly polar and can be labeled by [3H] myristate but not by [3H]palmitate. It reaches steady state during continuous labeling with [3H]myristate and shows rapid turnover in pulse-chase experiments, suggesting that it is a metabolic intermediate rather than an end product. When treated with HNO2 it liberates phosphatidylinositol, as does VSG (Ferguson, M. A. J., Low, M. G., and Cross, G. A. M. (1985) J. Biol. Chem. 260, 14547-14555). Also, like VSG, it releases a compound which co-migrates on thin layer chromatography with dimyristylglycerol when treated with the purified endogenous phospholipase C from trypanosomes. After treatment with this lipase, the putative precursor can be immunoprecipitated by antibodies directed against the C-terminal cross-reactive antigenic determinant of the VSG. These data provide strong evidence that this glycolipid is a VSG precursor.  相似文献   

16.
The experiments reported here further characterize a approximately 26[3H] kD cell surface glycoprotein that can be detected on rat cauda epididymal sperm using the galactose oxidase/NaB[3H]4 technique (1). When labeled sperm are treated with PI-PLC the 26[3H] kD is completely released from the cell. The released molecule can be recovered undegraded from incubation supernatant. Release by PI-PLC converts the hydrophobic, membrane-anchored form into a hydrophilic molecule as assessed by partition studies using Triton X114. Isoelectric focusing studies using both untreated (control) and PI-PLC treated samples shows that there is charge heterogeneity with two major peaks at pls of approximately 5.0 and approximately 4.5. We also show for the first time that the molecule persists on ejaculated cells.  相似文献   

17.
This is the first report establishing the existence of glycolipids synthesized by plasmodia, in particular Plasmodium falciparum. Trophozoites, schizonts, gametocytes, and gametes were metabolically labeled in vitro with [3H]glucosamine, [3H]galactose, [3H]glucose, [3H]mannose, [3H]fucose, [32P]inorganic phosphate, or [35S]sulfate, and total lipid extracts analyzed by high-performance thin-layer chromatography and autoradiography or fluorography. Parasites incorporated [3H]monosaccharides into distinctly different series of molecules previously undescribed. Three properties of [3H]glucosamine labeled molecules indicate they are glycolipids. First, labeled molecules have lipid solubility properties. Second, mobility on thin-layer chromatography was characteristic of glycolipids. Third, following acid hydrolysis, [3H]glucosamine was recovered from a total lipid extract of labeled parasites demonstrating that glucosamine is a constituent of some of these lipid molecules. Most of these glycolipids are neutral and alkali labile. The majority of these glycolipids differs from several synthesized phospholipids. None of these glycolipids was sulfated. Plasmodial glycolipid synthesis occurs concomitantly with glycoprotein synthesis, and both increase during schizogony. Many of these glycolipids appear to be identical among three strains of P. falciparum and between two species, P. falciparum and P. knowlesi. In contrast, there are stage specific differences in glycolipid synthesis among rings, schizonts, gametocytes, and a mixture of gametes plus zygotes of P. falciparum, examples of both erythrocytic and vector forms of the parasite.  相似文献   

18.
Glycosylated phosphoinositides serve as membrane anchors for numerous eukaryotic cell surface glycoproteins. Recent biochemical and genetic studies indicate that the glycolipids are assembled by sequential addition of components (monosaccharides and phosphoethanolamine) to phosphatidylinositol. The biosynthetic steps are presumed to occur in the ER, but formal proof of this is lacking. We describe experiments designed to establish the subcellular location of the initial steps in glycosyl-phosphatidylinositol (GPI) anchor biosynthesis and to define the transmembrane distribution of early biosynthetic lipid intermediates. The experiments were performed with the thymoma cell line BW5147.3. A subcellular fractionation protocol was used to show that early biosynthetic steps in GPI assembly, i.e., synthesis and deacetylation of N-acetylglucosaminyl phosphatidylinositol, occur in the ER. GPI biosynthetic intermediates were synthesized by incubating the microsomes with UDP-[3H]GlcNAc, and the transmembrane distribution of the labeled lipids was probed with phosphatidylinositol-specific phospholipase C (PI-PLC). Treatment of the radiolabeled microsomes with PI-PLC showed that > 70% of the N-acetylglucosaminyl phosphatidylinositol and glucosaminyl phosphatidylinositol could be hydrolyzed, indicating that the two lipids were primarily distributed in the cytoplasmic (outer) leaflet of the microsomes. Similar cleavage results were obtained using Streptolysin O-permeabilized thymoma cells. When permeabilized cells were incubated with UDP-[3H]GlcNAc and treated with PI-PLC, approximately 85% of the radiolabeled N-acetylglucosaminyl phosphatidylinositol and glucosaminyl phosphatidylinositol could be cleaved, indicating that they were accessible to the enzyme. The cumulative data indicate that early GPI intermediates are primarily located in the cytoplasmic leaflet of the ER, and are probably synthesized from PI located in the cytoplasmic leaflet and UDP-GlcNAc synthesized in the cytosol.  相似文献   

19.
Several mammalian mutant cell lines are deficient in the biosynthesis of glycophosphatidylinositol anchors for membrane proteins. When metabolically labeled with [3H]myo-inositol or [3H]mannose, two out of five mutant lines (SIA-b and EL4-f) accumulated abnormal lipids which remained undetectable in the corresponding parental cell lines. The most abundant glycolipid of SIA-b cells (named lipid X) was isolated and partially characterized using hydrofluoric acid, nitrous acid deamination, acetolysis, and exoglycosidase treatments alone or in combination. The partial structure for the carbohydrate moiety of lipid X is Man alpha-(X----)Man alpha-GlcN-inositol, X being a charged, HF-sensitive substituent (possibly phosphoethanolamine). Lipid X is largely resistant to phosphatidylinositol-specific phospholipase C treatment but can be rendered sensitive to the enzyme by treatment with methanolic NH3, which suggests the presence of an acyl chain on the inositol moiety. The lipid moieties of lipid X are heterogenous in that about 50% of headgroups remain bound to a lipid moiety after mild alkaline hydrolysis. Similarly, about 50% of the lipid moieties of Thy-1, a glycophosphatidylinositol-anchored surface glycoprotein, isolated from SIA, the parent of SIA-b cells or from EL4 lymphoma cells, are resistant to mild alkaline hydrolysis. Altogether the data suggest that the SIA-b mutant line lacks an enzyme acting late in the anchor glycolipid biosynthesis pathway.  相似文献   

20.
The early actions of thyrotropin-releasing hormone (TRH) have been studied in hormone-responsive clonal GH3 rat pituitary cells. Previous studies had demonstrated that TRH promotes a "phosphatidylinositol response" in which increased incorporation of [32P]orthophosphate into phosphatidylinositol and phosphatidic acid was observed within minutes of hormone addition. The studies described here were designed to establish whether increased labeling of phosphatidylinositol and phosphatidic acid resulted from prior hormone-induced breakdown of an inositol phosphatide. GH3 cells were prelabeled with [32P]orthophosphate or myo-[3H]inositol. Addition of TRH resulted in the rapid disappearance of labeled polyphosphoinositides, whereas levels of phosphatidylinositol and other phospholipids remained unchanged. TRH-promoted polyphosphoinositide breakdown was evident by 5 S and maximal by 15 s of hormone treatment. Concomitant appearance of inositol polyphosphates in [3H]inositol-labeled cells was observed. In addition, TRH rapidly stimulated diacylglycerol accumulation in either [3H]arachidonic- or [3H]oleic acid-labeled cultures. These results indicate that TRH rapidly causes activation of a polyphosphoinositide-hydrolyzing phospholipase C-type enzyme. The short latency of this hormone effect suggests a proximal role for polyphosphoinositide breakdown in the sequence of events by which TRH alters pituitary cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号