首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T-helper (Th) 22 and Th17 cells are involved in the pathogenesis of autoimmune diseases. However, their roles in the pathogenesis of Graves’disease (GD) are unclear. This study is aimed at examining the frequency of peripheral blood Th22, Th17, and Th1 cells and the levels of plasma IL-22, IL-17, and IFN-γ in patients with GD. A total of 27 patients with new onset GD and 27 gender- and age-matched healthy controls (HC) were examined for the frequency of peripheral blood Th22, Th17, and IFN-γ cells by flow cytometry. The concentrations of plasma IL-22, IL-17, and IFN-γ were examined by enzyme-linked immunosorbent assay. The levels of serum TSHR antibodies (A-TSHR), free triiodothyronine (FT3), free thyroxine (FT4), and thyroid stimulating hormone (TSH) were examined by radioimmunoassay and chemiluminescent assay, respectively. The levels of serum TSAb were examined by enzyme-linked immunosorbent assay. In comparison with those in the HC, significantly elevated percentages of Th22 and Th17 cells, but not Th1 cells, and increased levels of plasma IL-22 and IL-17, but not IFN-γ, were detected in GD patients (P<0.0001, for both). The percentages of both Th22 and Th17 cells and the levels of plasma IL-22 and IL-17 were correlated positively with the levels of serum TSAb in GD patients (r = 0.7944, P<0.0001; r = 0.8110, P<0.0001; r = 0.7101, p<0.0001; r = 0.7407, p<0.0001, respectively). Th22 and Th17 cells may contribute to the pathogenesis of GD.  相似文献   

2.
Alzheimer’s disease (AD) is the leading cause of dementia, a condition that gradually destroys brain cells and leads to progressive decline in mental functions. The disease is characterized by accumulation of misfolded neuronal proteins, amyloid and tau, into insoluble aggregates known as extracellular senile plaques and intracellular neurofibrillary tangles, respectively. However, only tau pathology appears to correlate with the progression of the disease and it is believed to play a central role in the progression of neurodegeneration. In AD, tau protein undergoes various types of posttranslational modifications, most notably hyperphosphorylation and truncation. Using four proteomics approaches we aimed to uncover the key steps leading to neurofibrillary degeneration and thus to identify therapeutic targets for AD. Functional neuroproteomics was employed to generate the first transgenic rat model of AD by expressing a truncated misordered form of tau, “Alzheimer’s tau”. The rat model showed that Alzheimer’s tau toxic gain of function is responsible for the induction of abnormal tau cascade and is the driving force in the development of neurofibrillary degeneration. Structural neuroproteomics allowed us to determine partial 3D structure of the Alzheimer’s filament core at a resolution of 1.6 Å. Signaling neuroproteomics data lead to the identification and characterization of relevant phosphosites (the tau phosphosignalome) contributing to neurodegeneration. Interaction neuroproteomics revealed links to a new group of proteins interacting with Alzheimer’s tau (tau interactome) under normal and pathological conditions, which would provide novel drug targets and novel biomarkers for treatment of AD and other tauopathies.  相似文献   

3.
4.
Spinocerebellar ataxia type 3 (SCA3), or Machado—Joseph disease (MJD), is an autosomal dominantly-inherited disease that produces progressive problems with movement. It is caused by the expansion of an area of CAG repeats in a coding region of ATXN3. The number of repeats is inversely associated with age at disease onset (AO) and is significantly associated with disease severity; however, the degree of CAG expansion only explains 50 to 70% of variance in AO. We tested two SNPs, rs709930 and rs910369, in the 3’ UTR of ATXN3 gene for association with SCA3/MJD risk and with SCA3/MJD AO in an independent cohort of 170 patients with SCA3/MJD and 200 healthy controls from mainland China. rs709930 genotype frequencies were statistically significantly different between patients and controls (p = 0.001, α = 0.05). SCA3/MJD patients carrying the rs709930 A allele and rs910369 T allele experienced an earlier onset, with a decrease in AO of approximately 2 to 4 years. The two novel SNPs found in this study might be genetic modifiers for AO in SCA3/MJD.  相似文献   

5.
Osteoporosis-related fractures are one of the complications of Graves’ disease. This study hypothesized that the different actions of thyroid-stimulating hormone receptor (TSHR) antibodies, both stimulating and blocking activities in Graves’ disease patients might oppositely impact bone turnover. Newly diagnosed premenopausal Graves’ disease patients were enrolled (n = 93) and divided into two groups: patients with TSHR antibodies with thyroid-stimulating activity (stimulating activity group, n = 83) and patients with TSHR antibodies with thyroid-stimulating activity combined with blocking activity (blocking activity group, n = 10). From the stimulating activity group, patients who had matched values for free T4 and TSH binding inhibitor immunoglobulin (TBII) to the blocking activity group were further classified as stimulating activity-matched control (n = 11). Bone turnover markers BS-ALP, Osteocalcin, and C-telopeptide were significantly lower in the blocking activity group than in the stimulating activity or stimulating activity-matched control groups. The TBII level showed positive correlations with BS-ALP and osteocalcin levels in the stimulating activity group, while it had a negative correlation with the osteocalcin level in the blocking activity group. In conclusion, the activation of TSHR antibody-activated TSH signaling contributes to high bone turnover, independent of the actions of thyroid hormone, and thyroid-stimulation blocking antibody has protective effects against bone metabolism in Graves’ disease.  相似文献   

6.
A hallmark of regulatory B cells is IL-10 production, hence their designation as IL-10+ B cells. Little is known about the ability of self-antigens to induce IL-10+ B cells in Graves’ disease (GD), Hashimoto’s thyroiditis (HT), or other autoimmune disease. Here we pulsed purified B cells from 12 HT patients, 12 GD patients, and 12 healthy donors with the thyroid self-antigen, thyroglobulin (TG) and added the B cells back to the remaining peripheral blood mononuclear cells (PBMCs). This procedure induced IL-10+ B-cell differentiation in GD. A similar tendency was observed in healthy donors, but not in cells from patients with HT. In GD, B cells primed with TG induced IL-10-producing CD4+ T cells. To assess the maximal frequency of inducible IL-10+ B cells in the three donor groups PBMCs were stimulated with PMA/ionomycin. The resulting IL-10+ B-cell frequency was similar in the three groups and correlated with free T3 levels in GD patients. IL-10+ B cells from both patient groups displayed CD25 or TIM-1 more frequently than did those from healthy donors. B-cell expression of two surface marker combinations previously associated with regulatory B-cell functions, CD24hiCD38hi and CD27+CD43+, did not differ between patients and healthy donors. In conclusion, our findings indicate that autoimmune thyroiditis is not associated with reduced frequency of IL-10+ B cells. These results do not rule out regulatory B-cell dysfunction, however. The observed phenotypic differences between IL-10+ B cells from patients and healthy donors are discussed.  相似文献   

7.
8.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder and the most common form of dementia and cognitive impairment is usually characterized by neuritic amyloid plaques, cerebrovascular amyloidosis and neurofibrillary tangles. In order to find out the pathological protein expression, a quantitative proteome analysis of AD hippocampus, substantia nigra and cortex was performed and the extent of protein expression variation not only in contrast to age-matched controls but also among the understudied regions was analyzed. Expression alterations of 48 proteins were observed in each region along with significant co/contra regulation of malate dehydrogenase, lactate dehydrogenase B chain, aconitate hydratase, protein NipSnap homolog 2, actin cytoplasmic 1, creatine kinase U-type and glyceraldehyde-3-phosphate dehydrogenase. These differentially expressed proteins are mainly involved in energy metabolism, cytoskeleton integration, apoptosis and several other potent cellular/molecular processes. Interaction association network analysis further confirms the close interacting relationship between the co/contra regulated differentially expressed proteins among all the three regions. Elucidation of co/contra regulation of differentially expressed proteins will be helpful to understand disease progression and functional alterations associated with AD.  相似文献   

9.

Purpose

It is well known that patients with Wilson’s disease (WD) suffer copper metabolism disorder. However, recent studies point to an additional iron metabolism disorder in WD patients. The purpose of our study was to examine susceptibility-weighted imaging (SWI) manifestations of WD in the brains of WD patients.

Methods

A total of 33 patients with WD and 18 normal controls underwent conventional MRI (Magnetic resonance imaging) and SWI. The phase values were measured on SWI-filtered phase images of the bilateral head of the caudate nuclei, globus pallidus, putamen, thalamus, substantia nigra, and red nucleus. Student’s t-tests were used to compare the phase values between WD groups and normal controls.

Results

The mean phase values for the bilateral head of the caudate nuclei, globus pallidus, putamen, thalamus, substantia nigra, and red nucleus were significantly lower than those in the control group (P < 0.001), and bilateral putamen was most strongly affected.

Conclusions

There is paramagnetic mineralization deposition in brain gray nuclei of WD patients and SWI is an effective method to evaluate these structures.  相似文献   

10.
Amounts of glutamate metabolizing enzymes such as glutamate dehydrogenase (GDH), glutamine synthetase (GS), GS-like protein (GSLP), and phosphate-activated glutaminase (PAG) were compared in prefrontal cortex of control subjects and patients with Alzheimer disease (AD). The target proteins were quantified by ECL-Western immunoblotting in extracts from brain tissue prepared by two different techniques separating enzymes preferentially associated with cytoplasm (GDH I and II isoenzymes, GS, and partially GSLP) and membrane (GDH III, PAG, and partially GSLP) fractions. Amounts of all listed enzymes were found significantly increased in the patient group compared with controls. Some links between the measured values were observed in the control, but not in the AD patient group. The results may suggest for the pathological interruption of regulatory relations between distinct enzymes of glutamate metabolism in brain of AD patients.  相似文献   

11.
Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motor decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible.  相似文献   

12.
13.
Parkinson''s disease (PD) is the second most common chronic and progressive neurodegenerative disorder. Its etiology remains elusive and at present only symptomatic treatments exists. Helicobacter pylori chronically colonizes the gastric mucosa of more than half of the global human population. Interestingly, H. pylori positivity has been found to be associated with greater of PD motor severity. In order to investigate the underlying cause of this association, the Sengenics Immunome protein array, which enables simultaneous screening for autoantibodies against 1636 human proteins, was used to screen the serum of 30 H. pylori-seropositive PD patients (case) and 30 age- and gender-matched H. pylori-seronegative PD patients (control) in this study. In total, 13 significant autoantibodies were identified and ranked, with 8 up-regulated and 5 down-regulated in the case group. Among autoantibodies found to be elevated in H. pylori-seropositive PD were included antibodies that recognize Nuclear factor I subtype A (NFIA), Platelet-derived growth factor B (PDGFB) and Eukaryotic translation initiation factor 4A3 (eIFA3). The presence of elevated autoantibodies against proteins essential for normal neurological functions suggest that immunomodulatory properties of H. pylori may explain the association between H. pylori positivity and greater PD motor severity.  相似文献   

14.
The discharge activity of 637 neurons of the human subthalamic nucleus (STN), which were extracellularly recorded during twelve stereotactic surgeries in patients with Parkinson’s disease, has been analyzed. On the basis of the parameters of interspike intervals (ISIs), we have distinguished three major patterns of spontaneous neuronal activity: bursting neurons, regular tonic and irregular tonic neurons. Parametric analysis has enabled us to determine the values of basic parameters in the activity of these three distinguished types of neurons. It has been shown that the representativeness and the activity parameters of three different patterns change in the dorsoventral direction of the STN from the motor to the associative regions. The results will allow researchers to perform targeted search of pathological neuronal activity patterns associated with the motor symptoms of Parkinsonism.  相似文献   

15.
Oxidative stress and mitochondrial dysfunction should play a role in the neurodegeneration in Huntington’s disease (HD). The most consistent finding is decreased activity of the mitochondrial complexes II/III and IV of the respiratory chain in the striatum. We assessed enzymatic activities of respiratory chain enzymes and other enzymes involved in oxidative processes in skin fibroblasts cultures of patients with HD. We studied respiratory chain enzyme activities, activities of total, Cu/Zn- and Mn-superoxide-dismutase, glutathione-peroxidase (GPx) and catalase, and coenzyme Q10 (CoQ10) levels in skin fibroblasts cultures from 13 HD patients and 13 age- and sex-matched healthy controls. When compared with controls, HD patients showed significantly lower specific activities for catalase corrected by protein concentrations (P < 0.01). Oxidized, reduced and total CoQ10 levels (both corrected by citrate synthase (CS) and protein concentrations), and activities of total, Cu/Zn- and Mn-superoxide-dismutase, and gluthatione-peroxidase, did not differ significantly between HD-patients and control groups. Values for enzyme activities in the HD group did not correlate with age at onset and of the disease and with the CAG triplet repeats. The primary finding of this study was the decreased activity of catalase in HD patients, suggesting a possible contribution of catalase, but not of other enzymes related with oxidative stress, to the pathogenesis of this disease.  相似文献   

16.
17.
Parkinson’s disease (PD) is a neurodegenerative disorder primarily characterized by progressive loss of dopamine neurons, leading to loss of motor coordination. However, PD is associated with a high rate of non-motor neuropsychiatric comorbities that often develop before the onset of movement symptoms. The MitoPark transgenic mouse model is the first to recapitulate the cardinal clinical features, namely progressive neurodegeneration and death of neurons, loss of motor function and therapeutic response to L-DOPA. To investigate whether MitoPark mice exhibit early onset of cognitive impairment, a non-motor neuropsychiatric comorbidity, we measured performance on a spatial learning and memory task before (∼8 weeks) or after (∼20 weeks) the onset of locomotor decline in MitoPark mice or in littermate controls. Consistent with previous studies, we established that a progressive loss of spontaneous locomotor activity began at 12 weeks of age, which was followed by progressive loss of body weight beginning at 16–20 weeks. Spatial learning and memory was measured using the Barnes Maze. By 20 weeks of age, MitoPark mice displayed a substantial reduction in overall locomotor activity that impaired their ability to perform the task. However, in the 8-week-old mice, locomotor activity was no different between genotypes, yet MitoPark mice took longer, traveled further and committed more errors than same age control mice, while learning to successfully navigate the maze. The modest between-day learning deficit of MitoPark mice was characterized by impaired within-day learning during the first two days of testing. No difference was observed between genotypes during probe trials conducted one or twelve days after the final acquisition test. Additionally, 8-week-old MitoPark mice exhibited impaired novel object recognition when compared to control mice. Together, these data establish that mild cognitive impairment precedes the loss of motor function in a novel rodent model of PD, which may provide unique opportunities for therapeutic development.  相似文献   

18.
The exact function of interleukin-19 (IL-19) on immune response is poorly understood. In mice, IL-19 up-regulates TNFα and IL-6 expression and its deficiency increases susceptibility to DSS-induced colitis. In humans, IL-19 favors a Th2 response and is elevated in several diseases. We here investigate the expression and effects of IL-19 on cells from active Crohn’s disease (CD) patient. Twenty-three active CD patients and 20 healthy controls (HC) were included. mRNA and protein IL-19 levels were analyzed in monocytes. IL-19 effects were determined in vitro on the T cell phenotype and in the production of cytokines by immune cells. We observed that unstimulated and TLR-activated monocytes expressed significantly lower IL-19 mRNA in active CD patients than in HC (logFC = −1.97 unstimulated; −1.88 with Pam3CSK4; and −1.91 with FSL-1; p<0.001). These results were confirmed at protein level. Exogenous IL-19 had an anti-inflammatory effect on HC but not on CD patients. IL-19 decreased TNFα production in PBMC (850.7±75.29 pg/ml vs 2626.0±350 pg/ml; p<0.01) and increased CTLA4 expression (22.04±1.55% vs 13.98±2.05%; p<0.05) and IL-4 production (32.5±8.9 pg/ml vs 13.5±2.9 pg/ml; p<0.05) in T cells from HC. IL-10 regulated IL-19 production in both active CD patients and HC. We observed that three of the miRNAs that can modulate IL-19 mRNA expression, were up-regulated in monocytes from active CD patients. These results suggested that IL-19 had an anti-inflammatory role in this study. Defects in IL-19 expression and the lack of response to this cytokine could contribute to inflammatory mechanisms in active CD patients.  相似文献   

19.
Alzheimer’s disease (AD) is a well-known neurodegenerative disease that is associated with dramatic morphological abnormalities. The default mode network (DMN) is one of the most frequently studied resting-state networks. However, less is known about specific structural dependency or interactions among brain regions within the DMN in AD. In this study, we performed a Bayesian network (BN) analysis based on regional grey matter volumes to identify differences in structural interactions among core DMN regions in structural MRI data from 80 AD patients and 101 normal controls (NC). Compared to NC, the structural interactions between the medial prefrontal cortex (mPFC) and other brain regions, including the left inferior parietal cortex (IPC), the left inferior temporal cortex (ITC) and the right hippocampus (HP), were significantly reduced in the AD group. In addition, the AD group showed prominent increases in structural interactions from the left ITC to the left HP, the left HP to the right ITC, the right HP to the right ITC, and the right IPC to the posterior cingulate cortex (PCC). The BN models significantly distinguished AD patients from NC with 87.12% specificity and 81.25% sensitivity. We then used the derived BN models to examine the replicability and stability of AD-associated BN models in an independent dataset and the results indicated discriminability with 83.64% specificity and 80.49% sensitivity. The results revealed that the BN analysis was effective for characterising regional structure interactions and the AD-related BN models could be considered as valid and predictive structural brain biomarker models for AD. Therefore, our study can assist in further understanding the pathological mechanism of AD, based on the view of the structural network, and may provide new insights into classification and clinical application in the study of AD in the future.  相似文献   

20.

Objectives

Tinnitus is the perception of a sound in the absence of any physical source of it. About 5–15% of the population report hearing such a tinnitus and about 1–2% suffer from their tinnitus leading to anxiety, sleep disorders or depression. It is currently not completely understood why some people feel distressed by their tinnitus, while others don''t. Several studies indicate that the amount of tinnitus distress is associated with many factors including comorbid anxiety, comorbid depression, personality, the psychosocial situation, the amount of the related hearing loss and the loudness of the tinnitus. Furthermore, theoretical considerations suggest an impact of the age at tinnitus onset influencing tinnitus distress.

Methods

Based on a sample of 755 normal hearing tinnitus patients we tested this assumption. All participants answered a questionnaire on the amount of tinnitus distress together with a large variety of clinical and demographic data.

Results

Patients with an earlier onset of tinnitus suffer significantly less than patients with an onset later in life. Furthermore, patients with a later onset of tinnitus describe their course of tinnitus distress as more abrupt and distressing right from the beginning.

Conclusion

We argue that a decline of compensatory brain plasticity in older age accounts for this age-dependent tinnitus decompensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号