首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) benefit Non-small cell lung cancer (NSCLC) patients, and an EGFR-TKIi erlotinib, is approved for patients with recurrent NSCLC. However, resistance to erlotinib is a major clinical problem. Earlier we have demonstrated the role of Hedgehog (Hh) signaling in Epithelial-to-Mesenchymal transition (EMT) of NSCLC cells, leading to increased proliferation and invasion. Here, we investigated the role of Hh signaling in erlotinib resistance of TGF-β1-induced NSCLC cells that are reminiscent of EMT cells.

Methods

Hh signaling was inhibited by specific siRNA and by GDC-0449, a small molecule antagonist of G protein coupled receptor smoothened in the Hh pathway. Not all NSCLC patients are likely to benefit from EGFR-TKIs and, therefore, cisplatin was used to further demonstrate a role of inhibition of Hh signaling in sensitization of resistant EMT cells. Specific pre- and anti-miRNA preparations were used to study the mechanistic involvement of miRNAs in drug resistance mechanism.

Results

siRNA-mediated inhibition as well as pharmacological inhibition of Hh signaling abrogated resistance of NSCLC cells to erlotinib and cisplatin. It also resulted in re-sensitization of TGF-β1-induced A549 (A549M) cells as well the mesenchymal phenotypic H1299 cells to erlotinib and cisplatin treatment with concomitant up-regulation of cancer stem cell (CSC) markers (Sox2, Nanog and EpCAM) and down-regulation of miR-200 and let-7 family miRNAs. Ectopic up-regulation of miRNAs, especially miR-200b and let-7c, significantly diminished the erlotinib resistance of A549M cells. Inhibition of Hh signaling by GDC-0449 in EMT cells resulted in the attenuation of CSC markers and up-regulation of miR-200b and let-7c, leading to sensitization of EMT cells to drug treatment, thus, confirming a connection between Hh signaling, miRNAs and drug resistance.

Conclusions

We demonstrate that Hh pathway, through EMT-induction, leads to reduced sensitivity to EGFR-TKIs in NSCLCs. Therefore, targeting Hh pathway may lead to the reversal of EMT phenotype and improve the therapeutic efficacy of EGFR-TKIs in NSCLC patients.
  相似文献   

2.
Hedgehog (Hh) signaling plays essential roles in various developmental processes, and its aberrant regulation results in genetic disorders or malignancies in various tissues. Hyperactivation of Hh signaling is associated with lung cancer development, and there have been extensive efforts to investigate how to control Hh signaling pathway and regulate cancer cell proliferation. In this study we investigated a role of CDO, an Hh co-receptor, in non-small cell lung cancer (NSCLC). Inhibition of Hh signaling by SANT-1 or siCDO in lung cancer cells reduced proliferation and tumorigenicity, along with the decrease in the expression of the Hh components. Histological analysis with NSCLC mouse tissue demonstrated that CDO was expressed in advanced grade of the cancer, and precisely co-localized with GLI1. These data suggest that CDO is required for proliferation and survival of lung cancer cells via Hh signaling.  相似文献   

3.
Resistance to therapy and metastasis remains one of the leading causes of mortality due to cervical cancer despite advances in detection and treatment. The mechanism of epithelial to mesenchymal transition (EMT) provides conceptual explanation to the invasiveness and metastatic spread of cancer but it has not been fully understood in cervical cancer. This study aims to investigate the mechanism by which silencing of E-cadherin gene regulates EMT leading to proliferation, invasion, and chemoresistance of cervical cancer cells through the Hedgehog (Hh) signaling pathway. We developed an in vitro EMT model by the knockdown of E-cadherin expression in cervical cancer cell lines. To understand the role of developmental pathway like Hh in the progression of cervical cancer, we investigated the expression of Hh pathway mediators by array in E-cadherin low cervical cancer cells and observed upregulation of Hh pathway. This was further validated on low passage patient-derived cell lines and cervical carcinoma tissue sections from cervical cancer patients. Further, we evaluated the role of two inhibitors (cyclopamine and GANT58) of the Hh pathway on invasiveness and apoptosis in E-cadherin low cervical cancer cells. In conclusion, we observed that inhibition of Hh pathway with GANT58 along with current therapeutic procedures could be more effective in targeting drug-resistant EMT cells and bulk tumor cells in cervical cancer.  相似文献   

4.
Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.  相似文献   

5.
J Yang  G Qin  M Luo  J Chen  Q Zhang  L Li  L Pan  S Qin 《Cell death & disease》2015,6(7):e1829
Gefitinib efficiency in non-small-cell lung cancer (NSCLC) therapy is limited due to development of drug resistance. The molecular mechanisms of gefitinib resistance remain still unclear. In this study, we first found that connexin 26 (Cx26) is the predominant Cx isoform expressed in various NSCLC cell lines. Then, two gefitinib-resistant (GR) NSCLC cell lines, HCC827 GR and PC9 GR, from their parental cells were established. In these GR cells, the results showed that gefitinib resistance correlated with changes in cellular EMT phenotypes and upregulation of Cx26. Cx26 was detected to be accumulated in the cytoplasm and failed to establish functional gap-junctional intercellular communication (GJIC) either in GR cells or their parental cells. Ectopic expression of GJIC-deficient chimeric Cx26 was sufficient to induce EMT and gefitinib insensitivity in HCC827 and PC9 cells, while knockdown of Cx26 reversed EMT and gefitinib resistance in their GR cells both in vitro and in vivo. Furthermore, Cx26 overexpression could activate PI3K/Akt signaling in these cells. Cx26-mediated EMT and gefitinib resistance were significantly blocked by inhibition of PI3K/Akt pathway. Specifically, inhibition of the constitutive activation of PI3K/Akt pathway substantially suppressed Cx26 expression, and Cx26 was confirmed to functionally interplay with PI3K/Akt signaling to promote EMT and gefitinib resistance in NSCLC cells. In conclusion, the reciprocal positive regulation between Cx26 and PI3K/Akt signaling contributes to acquired gefitinib resistance in NSCLC cells by promoting EMT via a GJIC-independent manner.Lung cancer, of which non-small-cell lung cancer (NSCLC) is the most common form, remains the leading cause of cancer-related deaths worldwide.1 Currently, gefitinib, as the first epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), is one of the most accepted therapies against NSCLC carrying EGFR mutations. However, almost all NSCLC patients who initially respond well to EGFR-TKIs eventually develop acquired resistance.2 Development of effective therapeutic interventions to overcome gefitinib resistance is an urgent need.Epithelial-mesenchymal transition (EMT), during which cancer cells lose epithelial markers such as E-cadherin but gain mesenchymal markers such as vimentin, is known to be deeply involved in cancer progression and chemotherapy resistance. Specially in NSCLC, EMT plays pivotal roles in the acquired resistance to EGFR-TKIs such as gefitinib.3, 4 For example, restoring E-cadherin expression or silencing EMT regulator Slug increases gefitinib sensitivity in NSCLC cells with a mesenchymal phenotype.5, 6 Accumulating evidences indicate that constitutively activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling is a central feature of EMT in many cancers including NSCLC.7, 8 However, the exact mechanism for the acquired gefitinib resistance of NSCLC remains unclear.Connexins (Cxs) are a family of transmembrane proteins, which compose the intercellular gap junctions between the neighboring cells.9 Gap junctions directly connect the cytoplasms of adjacent cells, thereby mediating direct exchange of signaling molecules smaller than 1 kDa, such as ions, small metabolites, and second messengers. This process is termed gap-junctional intercellular communication (GJIC). Cx expression and/or GJIC are frequently reduced or loss in malignant cell lines and cancers, while restoration of Cx expression and/or GJIC retarded tumor growth and increased cytotoxicities of chemotherapeutics such as cisplatin and docetaxel.10, 11, 12, 13 Therefore, Cxs have long been deemed tumor suppressors. However, increasing new observations were apparently contradicting the ''dogma'' and became clear that Cxs and GJIC also contribute to cancer progression and chemoresistance. For example, Cx32 expression was detected in breast cancer and significantly increased in lymph node metastases compared with primary tumors, suggesting Cx32 may be a sign of more malignant phenotype of breast cancer.14 Besides, cytoplasmic accumulation of Cx32 exerted favorable effects for hepatocellular carcinoma (HCC) progression including invasion and metastasis by Cx linked, but GJIC-independent mechanism.15 Recently, Gielen et al.16 reported that increasing the level of Cx43 confers temozolomide resistance in human glioma cells whereas knockdown of Cx43 sensitizes them to temozolomide treatment via both GJIC-dependent and -independent mechanisms.Up to now, there are ~21 isoforms of Cxs that distribute in almost all human organs in tissue-specific patterns.17 Cx26, one of the most common isoforms of Cxs, is predominantly expressed in lung tissue.18, 19 Despite Cx26 has been considered as a potential tumor suppressor or chemotherapy sensitizer in some types of tumors,20, 21 Ito et al.22 found that Cx26 helps lung squamous cell carcinoma (SCC, one histological type of NSCLC), acquire aggressive phenotypes, lymph node metastasis, and poor prognosis, indicating that a potential role of Cx26 on the malignant development of SCC. However, the roles of Cx26 and its derived GJIC in the development of gefitinib resistance in NSCLC have not been explored.In this study, to clarify the potential role of Cx26 and its derived GJIC in gefitinib resistance in NSCLC, we first surveyed the expression of four major Cxs in different gefitinib-sensitive NSCLC cell lines and found a positive correlation between high level of Cx26 and gefitinib insensitivity in NSCLC cells. Such an association was further confirmed in established gefitinib-resistant (GR) HCC827 and PC9 cell lines both in vitro and in vivo. Importantly, we find a positive mutual regulation between Cx26 and PI3K/Akt pathway, which confers acquired gefitinib resistance in NSCLC cells by GJIC-independent induction of EMT.  相似文献   

6.
Notch signalling pathway has been implicated as an important contributor to epithelial to myofibroblast transformation (EMT) in tumourigenesis. However, its role in kidney tubular cells undergoing EMT is not defined. This study assessed Notch signalling and the downstream effects on Snail in cultured proximal tubular epithelial cells. EMT was induced by exposure to transforming growth factor beta-1 (TGFβ1) and angiotensin II (AngII). The expressions of Notch1, Snail, E-cadherin and α-smooth muscle actin (α-SMA) were determined by Western blot. Matrix Metalloproteinase (MMP)-2 and -9 production were determined by zymography. The specific roles of Notch1-ICD and Snail were determined by gene expression or siRNA technique respectively. TGFβ1 and AngII resulted in EMT as characterized by the expected decrease in E-cadherin expression, an increase in α-SMA, MMP-2 and MMP-9 expression and associated increase of Notch1 and Snail. Over-expression of Notch1-ICD similarly resulted in increased Snail expression, loss of E-cadherin and increasedα-SMA. Inhibiting Snail degradation by pre-treatment with lithium chloride (LiCl) led to a further decrease in E-cadherin expression in cells concurrently exposed to TGFβ1 + AngII, confirming that Snail is a repressor of E-cadherin. Silencing of Snail blocked TGFβ1 + AngII induced EMT. Inhibition of Notch activation, by concurrent exposure to DAPT during the induction of EMT attenuated the decrease in E-cadherin expression, limited the increase in α-SMA and MMP-2 and -9 expression and decreased Snail expression. These results suggest a direct role for Notch signalling via the Snail pathway in the development of EMT and renal fibrosis.  相似文献   

7.

Background

mTOR, which can form mTOR Complex 1 (mTORC1) or mTOR Complex 2 (mTORC2) depending on its binding partners, is frequently deregulated in the pulmonary neoplastic conditions and interstitial lung diseases of the patients treated with rapalogs. In this study, we investigated the relationship between mTOR signaling and epithelial mesenchymal transition (EMT) by dissecting mTOR pathways.

Methods

Components of mTOR signaling pathway were silenced by shRNA in a panel of non-small cell lung cancer cell lines and protein expression of epithelial and mesenchymal markers were evaluated by immunoblotting and immunocytochemistry. mRNA level of the E-cadherin repressor complexes were evaluated by qRT-PCR.

Results

IGF-1 treatment decreased expression of the E-cadherin and rapamycin increased its expression, suggesting hyperactivation of mTOR signaling relates to the loss of E-cadherin. Genetic ablation of rapamycin-insensitive companion of mTOR (Rictor), a component of mTORC2, did not influence E-cadherin expression, whereas genetic ablation of regulatory-associated protein of mTOR (Raptor), a component of mTORC1, led to a decrease in E-cadherin expression at the mRNA level. Increased phosphorylation of AKT at Ser473 and GSK-3β at Ser9 were observed in the Raptor-silenced NSCLC cells. Of the E-cadherin repressor complexes tested, Snail, Zeb2, and Twist1 mRNAs were elevated in raptor-silenced A549 cells, and Zeb2 and Twist1 mRNAs were elevated in Raptor-silenced H2009 cells. These findings were recapitulated by treatment with the GSK-3β inhibitor, LiCl. Raptor knockdown A549 cells showed increased expression of N-cadherin and vimentin with mesenchymal phenotypic changes.

Conclusions

In conclusion, selective inhibition of mTORC1 leads to hyperactivation of the AKT/GSK-3β pathway, inducing E-cadherin repressor complexes and EMT. These findings imply the existence of a feedback inhibition loop of mTORC1 onto mTORC2 that plays a role in the homeostasis of E-cadherin expression and EMT, requiring caution in the clinical use of rapalog and selective mTORC1 inhibitors.  相似文献   

8.
Loss of E-cadherin and epithelial to mesenchymal transition (EMT) are key steps in cancer progression. Reactive oxygen species (ROS) play significant roles in cellular physiology and homeostasis. Roles of E-cadherin (CDH1), EMT and ROS are intriguingly illustrated in many cancers without focusing their collective concert during cancer progression. We report that hydrogen peroxide (H2O2) treatment modulate CDH1 gene expression by epigenetic modification(s). Sublethal dosage of H2O2 treatment decrease E-cadherin, increase DNMT1, HDAC1, Snail, Slug and enrich H3K9me3 and H3K27me3 in the CDH1 promoter. The effect of H2O2 was attenuated by ROS scavengers; NAC, lupeol and beta-sitosterol. DNMT inhibitor, AZA prevented the H2O2 induced promoter-CpG-island methylation of CDH1. Treatment of cells with U0126 (inhibitor of ERK) reduced the expression of DNMT1, Snail and Slug, increased CDH1. This implicates that CDH1 is synergistically repressed by histone methylation, DNA methylation and histone deacetylation mediated chromatin remodelling and activation of Snail and Slug through ERK pathway. Increased ROS leads to activation of epigenetic machineries and EMT activators Snail/Slug which in their course of action inactivates CDH1 gene and lack of E-cadherin protein promotes EMT in breast cancer cells. ROS and ERK signaling facilitate epigenetic silencing and support the fact that subtle increase of ROS above basal level act as key cell signaling molecules. Free radical scavengers, lupeol and beta-sitosterol may be tested for therapeutic intervention of breast cancer. This work broadens the amplitude of epigenome and open avenues for investigations on conjoint effects of canonical and intrinsic metabolite signaling and epigenetic modulations in cancer.  相似文献   

9.
10.
Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of death from cancer in men. Epithelial-mesenchymal transition (EMT) is a process by which cancer cells invade and migrate, and is characterized by loss of cell-cell adhesion molecules such as E-cadherin and increased expression of mesenchymal proteins such as vimentin; EMT is also associated with resistance to therapy. Snail, a master regulator of EMT, has been extensively studied and reported in cancers such as breast and colon; however, its role in prostate cancer is not as widely reported. The purpose of this review is to put together recent facts that summarize Snail signaling in human prostate cancer. Snail is overexpressed in prostate cancer and its expression and activity is controlled via phosphorylation and growth factor signaling. Snail is involved in its canonical role of inducing EMT in prostate cancer cells; however, it plays a role in non-canonical pathways that do not involve EMT such regulation of bone turnover and neuroendocrine differentiation. Thus, studies indicate that Snail signaling contributes to prostate cancer progression and metastasis and therapeutic targeting of Snail in prostate cancer holds promise in ?future.  相似文献   

11.
Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of death from cancer in men. Epithelial-mesenchymal transition (EMT) is a process by which cancer cells invade and migrate, and is characterized by loss of cell-cell adhesion molecules such as E-cadherin and increased expression of mesenchymal proteins such as vimentin; EMT is also associated with resistance to therapy. Snail, a master regulator of EMT, has been extensively studied and reported in cancers such as breast and colon; however, its role in prostate cancer is not as widely reported. The purpose of this review is to put together recent facts that summarize Snail signaling in human prostate cancer. Snail is overexpressed in prostate cancer and its expression and activity is controlled via phosphorylation and growth factor signaling. Snail is involved in its canonical role of inducing EMT in prostate cancer cells; however, it plays a role in non-canonical pathways that do not involve EMT such regulation of bone turnover and neuroendocrine differentiation. Thus, studies indicate that Snail signaling contributes to prostate cancer progression and metastasis and therapeutic targeting of Snail in prostate cancer holds promise in �future.  相似文献   

12.
13.
Although cancers can be initially treated with the epidermal growth factor receptor (EGFR) inhibitor, gefitinib, continued gefitinib therapy does not benefit the survival of patients due to acquired resistance through EGFR mutations, c-MET amplification, or epithelial-mesenchymal transition (EMT). It is of further interest to determine whether mesenchymal-like, but not epithelial-like, cancer cells can become resistant to gefitinib by bypassing EGFR signaling and acquiring alternative routes of proliferative and survival signaling. Here we examined whether gefitinib resistance of cancer cells can be caused by transmembrane 4 L six family member 5 (TM4SF5), which has been shown to induce EMT via cytosolic p27Kip1 stabilization. Gefitinib-resistant cells exhibited higher and/or sustained TM4SF5 expression, cytosolic p27Kip1 stabilization, and mesenchymal phenotypes, compared with gefitinib-sensitive cells. Conversion of gefitinib-sensitive to -resistant cells by introduction of the T790M EGFR mutation caused enhanced and sustained expression of TM4SF5, phosphorylation of p27Kip1 Ser10 (responsible for cytosolic location), loss of E-cadherin from cell-cell contacts, and gefitinib-resistant EGFR and survival signaling activities. Additionally, TM4SF5 overexpression lessened the sensitivity of NSCLC cells to gefitinib. Suppression of TM4SF5 or p27Kip1 in gefitinib-resistant cells via the T790M EGFR mutation or TM4SF5 expression rendered them gefitinib-sensitive, displaying more epithelial-like and less mesenchymal-like characteristics. Together, these results indicate that TM4SF5-mediated EMT may have an important function in the gefitinib resistance of cancer cells.  相似文献   

14.

Background

BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism.

Aim

The present study, performed in a panel of NSCLC cell lines expressing different ABCG2 plasma membrane levels, was designed to investigate the effect of the efflux transporter ABCG2 on intracellular gefitinib accumulation, by dissecting the contribution of uptake and efflux processes.

Methods and Results

Our findings indicate that gefitinib, in lung cancer cells, inhibits ABCG2 activity, as previously reported. In addition, we suggest that ABCG2 silencing or overexpression affects intracellular gefitinib content by modulating the uptake rather than the efflux. Similarly, overexpression of ABCG2 affected the expression of a number of drug transporters, altering the functional activities of nutrient and drug transport systems, in particular inhibiting MPP, glucose and glutamine uptake.

Conclusions

Therefore, we conclude that gefitinib is an inhibitor but not a substrate for ABCG2 and that ABCG2 overexpression may modulate the expression and activity of other transporters involved in the uptake of different substrates into the cells.  相似文献   

15.
16.
Despite the initial response, all patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) eventually develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). The EGFR-T790M secondary mutation is responsible for half of acquired resistance cases, while MET amplification has been associated with acquired resistance in about 5-15% of NSCLCs. Clinical findings indicate the retained addiction of resistant tumors on EGFR signaling. Therefore, we evaluated the molecular mechanisms supporting the therapeutic potential of gefitinib maintenance in the HCC827 GR5 NSCLC cell line harbouring MET amplification as acquired resistance mechanism. We demonstrated that resistant cells can proliferate and survive regardless of the presence of gefitinib, whereas the absence of the drug significantly enhanced cell migration and invasion. Moreover, the continuous exposure to gefitinib prevented the epithelial-mesenchymal transition (EMT) with increased E-cadherin expression and down-regulation of vimentin and N-cadherin. Importantly, the inhibition of cellular migration was correlated with the suppression of EGFR-dependent Src, STAT5 and p38 signaling as assessed by a specific kinase array, western blot analysis and silencing functional studies. On the contrary, the lack of effect of gefitinib on EGFR phosphorylation in the H1975 cells (EGFR-T790M) correlated with the absence of effects on cell migration and invasion. In conclusion, our findings suggest that certain EGFR-mutated patients may still benefit from a second-line therapy including gefitinib based on the specific mechanism underlying tumor cell resistance.  相似文献   

17.
The Wnt pathway is integrally involved in regulating self-renewal, proliferation, and maintenance of cancer stem cells (CSCs). We explored the effect of the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), in modulating epithelial to mesenchymal transition (EMT) in CSCs from human glioblastoma cells lines, U87 and U373. sFRP4 chemo-sensitized CSC-enriched cells to the most commonly used anti-glioblastoma drug, temozolomide (TMZ), by the reversal of EMT. Cell movement, colony formation, and invasion in vitro were suppressed by sFRP4+TMZ treatment, which correlated with the switch of expression of markers from mesenchymal (Twist, Snail, N-cadherin) to epithelial (E-cadherin). sFRP4 treatment elicited activation of the Wnt-Ca2 + pathway, which antagonizes the Wnt/ß-catenin pathway. Significantly, the chemo-sensitization effect of sFRP4 was correlated with the reduction in the expression of drug resistance markers ABCG2, ABCC2, and ABCC4. The efficacy of sFRP4+TMZ treatment was demonstrated in vivo using nude mice, which showed minimum tumor engraftment using CSCs pretreated with sFRP4+TMZ. These studies indicate that sFRP4 treatment would help to improve response to commonly used chemotherapeutics in gliomas by modulating EMT via the Wnt/ß-catenin pathway. These findings could be exploited for designing better targeted strategies to improve chemo-response and eventually eliminate glioblastoma CSCs.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号