首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juvenile hormone esterase (JHE) from the serum of the cricket, Gryllus assimilis, was purified to homogeneity in a four-step procedure involving polyethylene glycol precipitation, hydrophobic interaction FPLC, and ion exchange FPLC. This procedure could be completed in 4 days and resulted in a greater than 900-fold purification with greater than 30% recovery. The purified enzyme exhibited a single band on a silver-stained SDS PAGE gel and had an apparent subunit molecular mass of 52 kDa. The native subunit molecular mass, determined by gel permeation FPLC, was 98 kDa, indicating that JHE from Gryllus assimilis is a dimer of two identical or similar subunits. The turnover number of the purified enzyme (1.41 s(-1)), K(M(JH-III)) (84 +/- 12 nM) of nearly-purified enzyme, and k(cat)/K(M) (1.67 x 10(7) s(-1) M(-1)) were similar to values reported for other well-established lepidopteran and dipteran JHEs. JHE from Gryllus assimilis was strongly inhibited by the JHE transition-state analogue OTFP (octylthio-1,1,1-trifluoro-2-propanone; I(50) = 10(-7) M) and by DFP (diisopropyl fluorophosphate; I(50) = 10(-7) M). The shapes of the inhibition profiles suggest the existence of multiple binding sites for these inhibitors or multiple JHEs that differ in inhibition. Isoelectric focusing separated the purified protein into 4 isoforms with pIs ranging from 4.7-4.9. N-terminal amino acid sequences (11-20 amino acids) of the isoforms differed from each other in 1-4 positions, suggesting that the isoforms are products of the same or similar genes. Homogeneously purified JHE hydrolyzed alpha-napthyl esters, did not exhibit any detectable acetylcholinesterase, acid phosphatase, or aminopeptidase activity, and exhibited only very weak alkaline phosphatase activity. JHE exhibited a low (11 microM) K(M) for long-chain alpha-naphthyl esters, indicating that JHE may have physiological roles other than the hydrolysis of JH-III. Purification of JHE represents a key step in our attempts to identify the molecular causes of genetically-based variation in JHE activity in G. assimilis. This represents the first homogeneous purification of JHE from a hemimetabolous insect.  相似文献   

2.
3.
《Insect Biochemistry》1991,21(6):583-595
A major peak of juvenile hormone esterase (JHE) activity approaching 330 nmol JH III hydrolyzed/min/ml of hemolymph was observed during the last larval growth stage in Lymantria dispar. A smaller peak of JHE occurred 3–5 days after pupation. The gypsy moth JHE was purified from larval hemolymph using a classical approach. A specific activity of 766 units per mg of protein and a Km of 3.6 × 10−7 M for racemic JH III and the (10R, 11S) enantiomer of JH II was determined for the purified enzyme. The 62 kDa esterase was insensitive to inhibition by O,O-diisopropyl phosphorofluoridate (DFP), or by phenylmethylsulfonyl fluoride (PMSF). Two forms of JHE isolated by RP-HPLC were indistinguishable by HPLC tryptic peptide mapping and share an identical N-terminal amino acid sequence. Polyclonal antisera raised against gypsy moth enzyme cross-reacted with JHE from Trichoplusia ni but not with JHE from Manduca sexta. A weak cross-reactivity was observed with JHE from Heliothis virescens. Forty amino acid residues of the N-terminus were placed in sequence. The N-terminal sequence of JHE from L. dispar showed little homology to the sequence of JHE from H. virescens. The immunological and structural data support the conclusion that markedly different esterases, which catalyze the hydrolysis of juvenile hormone, are present in the hemolymph of different Lepidoptera.  相似文献   

4.
Juvenile hormone (JH) esterase was purified greater than 1000-fold in one step from hemolymph and whole larval homogenates from the last larval instar of Trichoplusia ni to give a single diffuse band that migrates at Mr = 64,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purification was based on an affinity chromatography procedure that employs trifluoromethyl ketone ligands. Isoelectric focusing of the purified preparations resulted in multiple bands that coincided to all significant hydrolysis of juvenile hormone detected in this manner. Kinetic experiments using optically pure enantiomers of JH II as substrates showed the two main electromorphs of JH esterase from the hemolymph to have apparently identical kinetic parameters as well as a similar capability to distinguish between substrates that differ in the orientation of the epoxide moiety of JH. However, the enzyme could hydrolyze esters lacking the JH structure. The proteins were shown to be monomers and to have asparagine-linked oligosaccharides, most likely of hybrid structure. Immunochemical and other evidence showed that the affinity-purified proteins were responsible for all significant JH esterase activity during periods of rapid esterolysis in vivo.  相似文献   

5.
In the cricket, Teleogryllus commodus, eggs, haemolymph of 7th and 8th (last)-larval instars, and haemolymph of adults of both sexes contain only juvenile hormone III. While in the male the hormone titre is independent of previous mating experience, juvenile hormone concentration in haemolymph taken from females 36–38 hr after mating (an event which is followed by oviposition) is at a level 5 times higher than that of virgin females. Based on data gleaned from several research groups the identification of juvenile hormone III as the exclusive juvenile hormone in the Order Orthopteroidea is discussed.  相似文献   

6.
7.
The role of juvenile hormone (JH) and juvenile hormone esterase (JHE) in regulating wing morph determination was studied in the cricket Modicogryllus confirmatus. JHE activities were significantly higher in nascent long-winged (LW) vs short-winged (SW) crickets during the latter half but not during the first half of the last stadium. The magnitude and direction of the activity differences were similar to those previously documented between wing morphs of the cricket, Gryllus rubens. In contrast, activities of general esterase, an enzyme or group of enzymes with no demonstrated role in regulating the JH titer in insects, showed no or only minor differences between morphs. The magnitude and direction of the JHE activity variation is consistent with a regulatory role for this enzyme in some aspect of wing dimorphism. However, the timing of the differences (exclusively during the last half of the last stadium) argue against a role in regulating wing length development per se. Single or multiple applications of juvenile hormone-III to nascent LW individuals during the first few days of the last stadium significantly redirected development from long to short wings. Multiple applications of acetone, by itself, also increased the production of short-winged adults. For most treatments, all individuals with shortened wings also had undeveloped flight muscles. These data suggest that JH may play a role in wing morph determination in M. confirmatus but that it affects a different aspect of the polymorphism from JHE.  相似文献   

8.
9.
Juvenile hormone esterase (JHE) from hemolymph of the silkworm moth Bombyx mori was characterized for substrate specificity and inhibitor sensitivity. B. mori JHE hydrolyzed the juvenile hormone surrogate substrate methyl n-heptylthioacetothioate (HEPTAT) more efficiently than p-nitrophenyl acetate and 1-naphthyl acetate substrates widely used to assay total carboxylesterase activity. B. mori JHE was sensitive to 3-octylthio-1,1,1-trifluoro-2-propanone (OTFP), which was developed as a selective inhibitor for lepidopteran JHE, and relatively insensitive to diisopropyl fluorophosphate (DFP), an inhibitor of serine esterases but not of all JHEs. Affinity purification with a trifluoromethyl ketone ligand was more efficient for purification of B. mori JHE than DEAE ion exchange chromatography.  相似文献   

10.
11.
Juvenile hormone (JH) esterase found primarily in the hemolymph and tissues of insects is a low abundance protein involved in the ester hydrolysis of insect juvenile hormones, JHs. The enzyme was purified from the larval plasma of wild-type Manduca sexta using an affinity column prepared by binding the ligand, 3-[(4'-mercapto)butylthio]-1,1,1-trifluoropropan-2-one (MBTFP), to epoxy-activated Sepharose. The purification was greater than 700-fold with a 72% recovery, and the purified enzyme appeared as a single protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoelectrophoresis, reverse phase high performance liquid chromatography, and amino acid sequence analysis. The molecular weight was 66,000. The plasma JH esterase in wild-type, black, and white strains of M. sexta was similar when analyzed by immunotitration, wide range (pH 3.5-9.0) isoelectric focusing, and inhibition with MBTFP and 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP). Inhibition studies revealed a sensitive and insensitive form (I50 = 10(-9) and 10(-6) M, respectively) in these three biotypes. Narrow range isoelectric focusing (pH 4.0-7.0) indicated the presence of two major isoelectric forms with pI values of 6.0 and 5.5, but their inhibition kinetics with OTFP and O,O-diisopropyl phosphorofluoridate were identical.  相似文献   

12.
Immunohistochemical studies were conducted to determine tissue(s) which might be involved in the uptake of juvenile hormone esterase (JHE) from larval hemolymph. Purified JHE expressed by a recombinant baculovirus carrying the JHE gene from Heliothis virescens was injected into the hemolymph of second stadium larvae of Manduca sexta. Immunoreactive material detected with specific antibodies against the natural JHE purified by affinity chromatography from the hemolymph of H. virescens was localized only in the dorsal regions of whole larval mounts. Further immunohistochemical studies of whole and dissected larvae at the light and electron microscopic level showed the specific localization of JHE in pericardial cells. Western blot analysis confirmed the localization of injected JHE in pericardial cells and also indicated some apparent degradation of the incorporated JHE. Similar results were obtained with the JHE from H. virescens injected into larvae of H. virescens. These results indicate that pericardial cells are involved in the uptake of injected JHE from insect hemolymph and its degradation.  相似文献   

13.
14.
The two major isoforms of juvenile hormone (JH) esterase isolated from Trichoplusia ni were fragmented by cyanogen bromide and trypsin digestion. The resulting CNBr or CNBr/trypsin fragments were characterized and compared biochemically by SDS-PAGE, isoelectric focusing, two-dimensional electrophoresis and HPLC. Similar and unique fragments were examined for sequence, antigenic determinants and carbohydrate moieties. The studies identified small regions of the proteins which possess either potentially different sequences or different post-translational modifications. The location of a glycosylated asparagine residue was determined, as well as a region containing an epitope probably composed of a linear sequence of residues. An N-terminal region was identified that contained charge variation between the two isoforms and the sequence was obtained for the only unique CNBr/trypsin fragment detected from that region. These are the first data on mapping of regions of charge variation, epitope location and glycosylation sites for this enzyme from any insect species.  相似文献   

15.
Thomas BA  Church WB  Lane TR  Hammock BD 《Proteins》1999,34(2):184-196
Juvenile Hormone Esterase (JHE) plays an essential role in the development of insects since it is partially responsible for clearing juvenile hormone (JH), one of the hormones that is responsible for insect metamorphosis. JHE is a 60 kDa enzyme that selectively hydrolyzes the alpha/beta unsaturated ester of JH. Because of its pivotal role in insect development, we have targeted JHE for use as a biopesticide. In this study, we have constructed a homology-based molecular model of JHE from the agricultural crop pest, Heliothis virescens. JHE is a member of the alpha/beta hydrolase fold family of enzymes and was built according to two structures in the same family: acetylcholinesterase from Torpedo californica and lipase from Geotrichum candidum. Analysis of the active site region reveals extensive conservation between JHE and its templates. A surprise was the presence of a conserved Ser near the catalytic triad. Docking of JH III into the active site has provided insight into protein-substrate interactions that are corroborated by experimental observation. The model is being used as a predictive basis to design biopesticides. In this regard, we have identified a site on the protein surface that is suggestive of a recognition site for the putative JHE receptor.  相似文献   

16.
17.
Daily variations in the in vitro haemolymph juvenile hormone esterase activity (hJHE) of adult male and female Periplaneta americana were monitored over a 2 week period from the time of adult emergence and throughout the first reproductive cycle of the adult female. Kinetic analysis of hJHE from females indicated an apparent K(m) JH III of 5.59+/-1.75&mgr;M (V(max)=140pmol JH III hydrolysedh(-1) per &mgr;l haemolymph). In females the mean rate of JH III metabolism in diluted haemolymph shortly after emergence was 27.5+/-1.5pmolh(-1)&mgr;l(-1) (n=16) and remained relatively low (16-32pmolh(-1)&mgr;l(-1)) over much of early adult development. Activity remained at this level during the first two days of the 4 day reproductive cycle, but showed a much increased broad peak of activity (74-93pmolh(-1)&mgr;l(-1)) at 60-72h post-extrusion. This peak lags behind the whole body JH titre peak, which could suggest that elevated levels of JH III may bring about the induction of JH esterase(s). A different pattern of JHE activity was observed in adult males. hJHE rates in males at emergence were almost twice as high (81.5+/-15.8pmolh(-1)&mgr;l(-1), n=16) as those found in females at this time, but thereafter showed a downturn to moderate levels (44-68pmolh(-1)&mgr;l(-1)) that were maintained for the remainder of the study. Rapid (FPLC) DEAE-sepharose ion exchange chromatography, ultrafiltration and fast-flow superose gel filtration chromatography were employed to achieve an efficient partial purification (166-fold) of the hJHE from cell-free plasma of reproductively active female P. americana 48-72h post-ootheca extrusion. Gel filtration and SDS-polyacrylamide gel electrophoresis (PAGE) revealed an enzyme having apparent molecular mass of between 60 and 70kDa, whilst non-denaturing PAGE and iso-electrofocusing resolved a single acidic enzyme peak with a pI of 4.9.  相似文献   

18.
The regulation of the prepupal peak of juvenile hormorne esterase activity was investigated and found to be directly induced by juvenile hormone. Allatectomy and reimplanation as well as juvenile hormone application experiments all indicated that the appearance of prepupal juvenile hormone esterase activity was in response to a prepupal burst of juvenile hormone. Implantation experiments indicated that the effect of juvenile hormone is not mediated through the isolated brain or subesophageal ganglion.  相似文献   

19.
Male crickets, Gryllus bimaculatus Degeer, turned lights on or off in a chamber by a seesaw device: (1) during a 12 h, and (2) during a 24 h day. The crickets in (1) and the last-instar nymph in (2) turned the lights on and off at irregular intervals and duration. The selection rate for darkness was greater than that for light by an average exceeding 80%. The locomotor activity of the nymph in (1) was arrhythmic. In (1) the adults stridulated and were active in continuous darkness during the 12 h, while, in contrast in (2) they turned on the light and stridulated without switching the light off. The locomotor and stridulatory activities of the adult crickets in (2) were free-running. These activities resulted in a free-running rhythm of selection for light or darkness in (2). Under the conditions of the present experiments, the circadian pacemaker functioned in the same way in light and dark cycles as in constant light conditions.  相似文献   

20.
《Insect Biochemistry》1988,18(1):53-61
Juvenile hormone (JH) esterase was characterized from the plasma of adult females of the cabbage looper, Trichoplusia ni, and compared with that present in 4th and 5th instar larvae. Ester hydrolysis was the principal route of JH metabolism. Gel filtration of plasma resolved a single peak of JH esterase which was distinct from that of the α-naphthyl acetate (α-NA) esterase activity. The JH esterase apparent molecular weight was 62,000 in prepupae and virgin, female adults and 69,000 in 2-day-old 4th instar larvae. Broad range isoelectric focusing of plasma of prepupae and adults resolved a major peak of activity at pH 5.5 with a minor peak of activity at pH 6.1 and in 4th instar larvae at pH 5.45 and 5.8, respectively. By this method JH esterase was resolved from the α-NA esterase activity. The plasma of prepupae and adults metabolized JH I at about twice the rate of JH III. JH esterase activity from adult plasma was more stable than the α-NA esterase activity. Adult JH esterase activity was insensitive to inhibition by O,O-diisopropyl phosphorofluoridate in contrast to that of the α-NA esterase activity. Mated females oviposited 8 times more eggs than virgin females to 10 days after emergence. The total haemolymph protein content of virgin females remained high throughout the period of study whereas mated females showed a significant decline beginning on day 4. JH esterase activity remained unchanged in virgins whereas it declined drastically in mated females. The α-NA esterase activity declined to low levels shortly after emergence in both groups. JH and α-NA esterase activity was not affected by the application of the juvenoid, (RS)-methoprene. The present study provides evidence of a functional role for JH esterase in JH metabolism and reproduction in adult T. ni. JH esterases in the adult were identical to that of prepupae by the methods described above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号