首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 244 毫秒
1.
Some studies on insects have found a relationship between habitat structure and investment in dispersal-related traits. In this study we compared the morphology of the butterfly Melitaea cinxia from five sites on the large Baltic island Öland that differed markedly in degree of fragmentation and size. Both wild-caught adults and individuals reared in a split-plot design were compared. We found significant site differences in size-adjusted thorax mass and total body mass. Male thorax mass was on average larger among the sites with the highest degree of habitat fragmentation. However, due to significant sex–site interactions, males and females may have adapted differently to the habitat fragmentation. Using museum specimens, we also analysed changes in morphology, finding an increase in size (measured as head and thorax width) over time. Thorax width appears to have increased among females and decreased among males. Possible explanations include increasing fragmentation of the landscape and changes in population density.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 445–453.  相似文献   

2.
Nine populations of giant clams, Tridacna maxima, from six islands of French Polynesia were screened for allozyme variation at ten polymorphic loci. The genetic structure of populations of T. maxima were studied at different spatial scales: within an island, between islands of the same archipelago and between archipelagos. Significant genetic differences were observed only between populations from different archipelagos, and genetic differentiation was correlated with geographical separation. However, these results were only supported by a single locus, PEP * and all other loci were homogeneous between studied populations. According to Lewontin & Krakauer's model, the genetic structure can be explained by selection. The selective factors most likely depend on the respective habitat of each archipelago. We also studied genotype–phenotype correlation using the colour of the clam mantle, and did not find any relationship between the mantle colour and the genetic structure of the individuals.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 221–231.  相似文献   

3.
Colony kin structure and spatial population structure were studied in multiple populations of the ant Formica lemani , using allozymes and DNA microsatellites. Average genetic relatedness between nestmate workers varied little between populations ( r  = 0.51–0.76), indicating that the average colony kin structure was relatively simple. Worker genotypes could not be explained with a single breeding pair in all nests, however, and the distribution of relatedness estimates across nests was bimodal, suggesting that single- and multi-queen colonies co-occur. We studied spatial population structure in a successional boreal forest system, which is a mixture of different aged habitats. Newly clear-cut open habitat patches are quickly colonized by F. lemani , where it is able to persist for a limited number of generations. Newly-founded populations showed signs of a founder effect and spatial substructuring, whereas older populations were more homogenous. This suggests that new populations are founded by a limited number of colonizers arriving from more than one source. Genetic differentiation among local populations was minor, indicating strong migration between them. There were, however, indications of both isolation by distance and populations becoming more isolated as habitat patches grew older.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 247–258.  相似文献   

4.
Cochlearia polonica , a narrow endemic of southern Poland, is one of the rarest and most endangered species of the European flora. All natural populations are extinct and the species has survived in only one transplanted population derived from 14 original individuals. Using AFLPs, the genetic variation and spatial structure of this population were analysed approximately 30 years after transplantation. The incidence of polymorphic AFLP bands (30.46%) is low compared with data from a natural population of another Cochlearia species, C. tatrae . Principal co-ordinates and spatial autocorrelation analyses demonstrated the presence of significant genetic structure. It is recommended that conservation efforts on C. polonica should preserve the complete population area, because local extinctions may lead to a loss of genetic information. The presence of genetic structure should also be taken into account during the sampling of material (plants or seeds) for ex situ conservation measures.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 527–532.  相似文献   

5.
We studied the population dynamics of Mastus by investigating the effects of population structure, spatial ecology and biology of reproduction on the genetic diversity of two sympatric Mastus species endemic to the island of Crete. Over a period of 27 months, we carried out both mark–recapture and random quadrat sampling techniques in order to assess the dispersal trends, the aggregation patterns, the neighbourhood size and the habitat preferences of these species. There were 154 recorded movements for M. butoti and 114 for M. cretensis . Mean monthly dispersal was estimated at d  = 0.5 m for M. butoti and d  = 1 m for M. cretensis . Both species showed a random dispersal pattern but tended to aggregate in the field. Their populations were found to be highly structured owing to their highly parsimonious dispersal behaviour and the very low population densities, estimated at D  = 2.07 ± 0.16 and D  = 0.73 ± 0.16 individuals m−2 for M. butoti and M. cretensis , respectively. The neighbourhood size did not exceed 150 individuals for either species. The habitat occupied by each species changed during the active season, but both the immature and the adult individuals of each species seemed to prefer the same habitats throughout the active season. Partial population activation during the active season was observed in both species. We conclude that the population structure, the partial population activation and the species-specific reproductive strategies have a profound effect on maintaining the genetic diversity of the genus' populations.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 131–144.  相似文献   

6.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

7.
Plant species often exhibit genetic structure at multiple spatial scales. Detection of this structure may depend on the sampling strategy used. We intensively sampled a common, naturally patchy Banksia species within a 200 km2 region, in order to assess patterns of genetic diversity and structure at multiple spatial scales. In total, 1321 adult shrubs from 37 geographical populations were genotyped using eight highly polymorphic microsatellite markers developed for the species. Genetic structure was detected at three spatial scales. First, we identified a stark and unexpected division of the landscape into two genetic subregions, one to the north‐east and one to the south‐west of the sampling grid. This differentiation was based on sudden, highly structured differences in common allele frequencies, the cause of which is unknown but that may relate to physical and reproductive barriers to gene flow, localised selection, and/or historical processes. Second, we observed genetic differentiation of populations within these subregions, reflecting previously described patterns of restricted pollen flow in this species. Finally, fine‐scale genetic structure, although weak, was observed within some of the populations (mean SP = 0.01837). When feasible, intensive sampling may uncover cryptic patterns of genetic structure that would otherwise be overlooked when sampling at broader spatial scales. Further studies using a similar sampling strategy may reveal this type of discontinuity to be a feature of other south‐western Australian taxa and has implications for our understanding of evolution in this landscape as well as conservation into the future. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 241–255.  相似文献   

8.
We investigated the genetic structure of Eryngium alpinum (Apiaceae) in an Alpine valley where the plant occurs in patches of various sizes. In a conservation perspective, our goal was to determine whether the valley consists of one or several genetic units. Habitat fragmentation and previous observations of restricted pollen/seed dispersal suggested pronounced genetic structure, but gene dispersal often follows a leptokurtic distribution, which may lead to weak genetic structure. We used nine microsatellite loci and two nested sampling designs (50 × 50 m grid throughout the valley and 2 × 2 m grid in two 50 × 10 m quadrats). Within the overall valley, F -statistics and Bayesian approaches indicated high genetic homogeneity. This result might be explained by: (1) underestimation of long-distance pollen/seed dispersal by in situ experiments and (2) too recent fragmentation events to build up genetic structure. Spatial autocorrelation revealed isolation by distance on the overall valley but this pattern was much more pronounced in the 50 × 10 m quadrats sampled with a 2-m mesh. This was probably associated with limited primary seed dispersal, leading to the spatial clustering of half-sibs around maternal plants. We emphasize the interest of nested sampling designs and of combining several statistical tools.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 667–677.  相似文献   

9.
This study compares the population genetic structure of two obligate parthenogenetic sawfly species, Aneugmenus padi (L.) Zhelochovtsev and Eurhadinoceraea ventralis (Panzer) Enslin (Hymenoptera: Tenthredinidae). Allozymes were used to detect genetic differences in larvae collected at different sites in six European countries. For A. padi , scoring six polymorphic enzymes revealed the existence of five dominant, widely distributed clones and several more with only very few individuals occurring locally. The clonal diversity and identity differed across collection sites, with up to at maximum eight clones coexisting at a single locality. In contrast, in E. ventralis , individuals from different localities were all monomorphic for at least six different enzymes and are therefore assumed to belong to the same clone. Differences in population genetic structure of these sawfly species can be related to the differing distributions of their host plants: the fern, Pteridium aquilinum , the host of A. padi , has been an invasive species for more than two hundred years. Spread of clones of A. padi is likely to have closely followed the complex invasive pattern of spread of the plant. Larvae of E. ventralis were collected from local, horticultural plantings of Clematis spp. of recent origin probably with gardeners having traded plants infested with the sawfly.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 219–227.  相似文献   

10.
Over three consecutive years, we surveyed the temporal variability in genetic structure of sardine populations in the Bay of Biscay and effective population size. Based on individual age, the genetic structure of year classes of the fishes was also surveyed, showing that populations of sardines have weak but significant genetic differences between sampling years and between year classes. We used two different methods to assess effective population size. The methods resulted in different values but a similar range, indicating a low effective population for Sardina pilchardus . Effective population size decreased over the 3 years, probably resulting from an abundance of fish in the Bay. Based on these results, we conclude that temporal variability in the genetic structure of the sardine population and effective size are likely related to environmental conditions in the Bay. Finally, we propose to use effective population size to estimate biomass of sardines in the Bay.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 591–602.  相似文献   

11.
In this investigation, we have collected family-structured data from a partly self-compatible, outcrossing population of Brassica cretica to estimate and compare the effects of one-generation selfing on different types of characters. Inbreeding not only depressed characters that should be positively correlated with fitness irrespective of habitat, e.g. germinability, leaf number and inflorescence size, but also resulted in later flowering, smaller and more asymmetric flowers, and an increased production of basal branches. Population-level estimates of inbreeding depression were similar in magnitude to estimates reported in other wild plant species. There was a tendency for direct components of fitness to exhibit a stronger response to inbreeding than other characters, but only when the differences between selfed and outbred offspring were measured in standard deviation units. Family-level estimates of inbreeding depression were weakly correlated across characters. Given these and other observations, we hypothesize that the genetic basis of inbreeding depression varies across the life cycle and that changes in local inbreeding will lead to shifts in the mean phenotypes of B. cretica populations. However, judging from data on current levels of population divergence, quite large changes in inbreeding will be required to influence large-scale patterns of variation in this species.  © 2002 The Linnean Society of London. Biological Journal of the Linnean Society , 2002, 76 , 317–325.  相似文献   

12.
The relationship between habitat stability, demography, and population genetic structure was explored by comparing temporal microsatellite variability spanning a decade in two closely-related hermaphroditic freshwater snails from Cameroon, Bulinus forskalii and Bulinus camerunensis . Although both species show similar levels of preferential selfing, microsatellite analysis revealed significantly greater allelic richness and gene diversity in populations of the highly endemic B. camerunensis compared to those of the geographically-widespread B. forskalii . Additionally, B. camerunensis populations showed significantly lower spatial genetic differentiation, higher dispersal rates, and greater temporal stability compared to B. forskalii populations over a similar spatial scale. This suggests that a more stable demography and greater gene flow account for the elevated genetic diversity observed in this geographically-restricted snail. This contrasts sharply with a metapopulation model (which includes extinction/contraction, recolonization/expansion, and passive dispersal) invoked to account for population structuring in B. forskalii . As intermediate hosts for medically important schistosome parasites, these findings have ramifications for determining the scale at which local adaptation may occur in the coevolution of these snails and their parasites.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 747–760.  相似文献   

13.
Puccinellia pungens (Pau) Paunero is a narrowly endemic grass found in two continental saline lagoons of north-eastern Spain. This rare plant has been classified as 'at risk of extinction' in several national and European catalogues of endangered species. Recent demographic studies indicate that population sizes greatly exceed several million individuals, challenging that threat category. Our genetic analysis, based on allozymes, has shown that in spite of the large population sizes, very low levels of genetic variation were found in P. pungens . Genetic variation was similar in most populations, but the largest, Gallocanta lagoon as a whole, had less variation (35% polymorphic loci, 1.4 alleles/locus, H T = 0.038) than the more restricted Royuela range (45% polymorphic loci, 1.5 alleles/locus, H T = 0.056), suggesting a recent population expansion of the Gallocanta populations from few founder lines. The low genetic distances among populations also suggest a recent divergence. The low genetic variation observed cannot be explained fully by eventual clonal spread and rare seedling establishment in the hypersaline environment. This low variation seems to result from extreme recent population bottlenecks as a consequence of habitat conversion to agricultural fields. In the light of our data, it seems unlikely that reinforcement of populations could increase the genetic diversity of the populations. Hence, conservation efforts should focus on avoiding further habitat loss of this endangered steppe grass species.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 154 , 269–281.  相似文献   

14.
Based on population genetic theory and empirical studies of small populations, we expect that species with very small ranges (narrow endemics) will exhibit reduced genetic diversity, increasing their susceptibility to the negative effects of genetic homogeneity. Although this pattern of reduced diversity applies to most narrow endemics, conservation biologists have yet to identify a general pattern for the degree of spatial population genetic structure expected in species with very small ranges. In part, this is because the degree of population structure within narrow endemics will be highly variable depending on the equilibrium between the homogenizing effects of dispersal and the diversifying effects of drift and local selection in small populations, thus precluding general predictions about the relative importance of small range, small population sizes, and habitat patchiness for maintaining genetic diversity in narrowly-distributed species. We document a striking example of high population structure in the tiny geographic range of a stream-dwelling catfish, Trichogenes longipinnis , endemic to the Atlantic Forest of Brazil. The maintenance of this diversity results from a combination of asymmetrical and limited dispersal, and drift in small populations. Our results highlight the need to understand population structure, and not only overall genetic diversity, of narrowly-distributed species for their conservation planning.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 259–274.  相似文献   

15.
The demographic dynamics of three populations of Dioon edule Lindl. (Zamiaceae) were studied in a fragmented landscape using projection matrix modelling. Compared with other plant species, D. edule behaves like a tree life-form species. Density and spatial distribution patterns varied among populations according to models for animal-dispersed tree species. In all scenarios, λ was most sensitive to changes in abundance of adult plants. The elasticity reproductive component (F) for the three populations was zero and stasis values (L) were higher, this being a function of the permanence of non-reproductive individuals. It was detected that disturbance influences the population dynamics of D. edule as a function of adult plant persistence. This observation suggests that the conservation of adult plants is critical for D. edule and perhaps for all cycads species. Adult plant decapitation should be halted at the 'Monte Oscuro' population, subjected to sustainable management since 1990, if higher seed production is needed in rural nurseries.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 381–391.  相似文献   

16.
Levels of allozyme variation, population genetic structure, and fine-scale genetic structure (FSGS) of the rare, both sexually and clonally reproducing terrestrial orchid Epipactis thunbergii were examined for eight ( N  = 734) populations in a 20 × 20-km area in South Korea. Twenty-three putative allozyme loci resolved from 15 enzyme systems were used. Extremely low levels of allozyme variation were found within populations: the mean frequency of polymorphic loci was 3.8% [isocitrate dehydrogenase ( Idh-2 ) with two alleles was polymorphic across populations], the mean number of alleles per locus was 1.04, and the mean expected heterozygosity was 0.013. The overall fixation index was not significantly different from zero ( F IS = 0.069), although the species is self-compatible. However, a significantly high degree of population differentiation was found between populations at Idh-2 ( F ST = 0.388) in the studied area. Furthermore, spatial autocorrelation analyses revealed a significant FSGS (up to 3 m) within populations. These observations suggest that the main explanatory factors for the extremely low levels of genetic diversity and the shaping of the population genetic structure of E. thunbergii are genetic drift as a result of a small effective population size, a restricted gene flow, and the isolation of populations. Considering the current genetic structure of E. thunbergii , three guidelines are suggested for the development of conservation strategies for the species in South Korea: (1) protection of habitats of standing populations; (2) prohibition by law of any collection of E. thunbergii ; and (3) protection of nearby pollinator populations, given the fact that fruit set in natural habitats is very low.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 161–169.  相似文献   

17.
The pace and trajectory of coevolutionary arms races between parasites and their hosts are strongly influenced by the number of interacting species. In environments where a parasite has access to more than one host species, the parasite population may become divided in preference for a particular host. In the present study, we show that individual colonies of the pirate ant Polyergus breviceps differ in host preference during raiding, with each colony specializing on only one of two available Formica host species. Moreover, through genetic analyses, we show that the two hosts differ in their colony genetic structure. Formica occulta colonies were monogynous, whereas Formica  sp. cf. argentea colonies were polygynous and polydomous (colonies occupy multiple nest sites). This difference has important implications for coevolutionary dynamics in this system because raids against individual nests of polydomous colonies have less impact on overall host colony fitness than do attacks on intact colonies. We also used primers that we designed for four microsatellite loci isolated from P. breviceps to verify that colonies of this species, like other pirate ants, are comprised of simple families headed by one singly mated queen.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 565–572.  相似文献   

18.
Habitat size, quality and isolation determine the genetic structure and diversity of populations and may influence their evolutionary potential and vulnerability to stochastic events. Small and isolated populations are subject to strong genetic drift and can lose much of their genetic diversity due to stochastic fixation and loss of alleles. The mountain white‐eye Zosterops poliogaster, a cloud forest bird species, is exclusively found in the high mountains of East Africa. We analysed 13 polymorphic microsatellites for 213 individuals of this species that were sampled at different points in time in three mountain massifs differing in habitat size, isolation and habitat degradation. We analysed the genetic differentiation among mountain populations and estimated the effective population sizes. Our results indicate three mountain‐specific genetic clusters. Time cohorts did not show genetic divergences, suggesting that populations are large enough to prevent strong drift effects. Effective population sizes were higher in larger and geographically interconnected habitat patches. Our findings underline the relevance of ecological barriers even for mobile species and show the importance of investigating different estimators of population size, including both approaches based on single and multiple time‐points of sampling, for the inference of the demographic status of a population. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 828–836.  相似文献   

19.
Populations of the turret spider Atypoides riversi from eight central Californian sites were compared based on variation at ten allozyme loci. Multidimensional scaling of interpopulation genetic distances defined four population units (Coast Range, Sierran, Valley, Jenness Camp), corroborating the distinctness of Coast Range and Sierran populations indicated by a prior study. While the species status of these units has yet to be determined, Jenness Camp is the most likely to represent a new species, given its clear genetic uniqueness (two fixed allelic differences). Populations in all units were generally in Hardy–Weinberg equilibrium with no evidence of inbreeding, though variability was minimal (mean H o = 2.8%, mean P  = 15.4%). Reduced variability in these populations may be the result of repeated bottlenecks, environmental homogeneity, and/or directional selection. Interpopulation differentiation within units was significant in the absence of intervening forest habitat and was substantially less in its presence, indicating that gene flow is likely only when forest corridors exist. To foster preservation of the existing gene pool and enhance participation in it, management of the units of At. riversi should focus on maintaining as many populations in situ as possible and facilitating connections between them, while also creating or restoring habitat for potential colonization.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 27–37.  相似文献   

20.
The null assumption of molecular variation is that most of it is neutral to natural selection. This is in contrast to variation in morphological traits that we generally assume is maintained by selection, and therefore often by selection coupled to environmental heterogeneity in time and space. Examples of molecular variation that vary over habitat-shifts, particularly in allozymes, show that the relative impact of non-neutral variation as compared to neutral variation might be substantial in some systems. To assess the importance of habitat-generated variation in relation to variation generated by random processes in nuclear DNA markers at small spatial scales, we compared the effects of island isolation and habitat heterogeneity on genetic substructuring in a rocky shore snail ( Littorina saxatilis ). This species has a restricted migration among islands owing to the lack of free-floating larvae. Earlier studies show that allozymes vary extensively as a consequence of isolation by water barriers among islands, but also as a consequence of divergent selection among different microhabitats within islands. In the DNA markers we observed genetic differentiation owing to island isolation at three of nine loci. In addition, variation at three loci correlated with habitat type, but the correlation for two of the loci was weak. Overall, isolation contributed slightly more to the genetic variation among populations than did habitat-related factors but the difference was small. It is concluded that both island isolation, which interrupts gene flow, and a heterogeneous habitat cause genetic substructuring at the DNA level in L. saxatilis in the studied area, and thus in this species we need to be somewhat concerned about habitat heterogeneity also at DNA loci.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 377–384.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号