共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Previous studies have shown that Dictyostelium discoideum spore coat proteins are found in prespore cells, which are localized to the posterior region of migrating slugs, and in the coats of mature spores. Prespore vesicles, identified by morphology and by staining with anti-D. mucoroides spore serum, are also localized in the posterior region of migrating slugs. Using antisera specific to the spore coat proteins, we show that the spore coat proteins are packaged in prespore vesicles. They are present in the vesicles as a complex which can be dissociated by denaturation. The anti-D. mucoroides spore serum reacts with at least five proteins in whole spore extracts including the spore coat proteins SP96 and SP70. 相似文献
5.
6.
7.
During culmination of Dictyostelium fruiting bodies, prespore and prestalk cells undergo terminal differentiation to form spores and a cellular stalk. A genomic fragment was isolated by random cloning that hybridizes to a 1.4-kb mRNA present during culmination. Cell type separations at culmination showed that the mRNA is present in prespore cells and spores, but not in prestalk or stalk cells. After genomic mapping, an additional 3 kb of DNA surrounding the original 1-kb fragment was cloned. The gene was sequenced and named Dd31 after the size of the predicted protein product in kilodaltons. Accumulation of Dd31 mRNA occurs immediately prior to sporulation. Addition of 20 mM 8-Br-cAMP to cells dissociated from Mexican hat stage culminants induced sporulation and the accumulation of Dd31 mRNA, while 20 mM cAMP did not. Dd31 mRNA does not accumulate in the homeotic mutant stalky in which prespore cells are converted to stalk cells rather than spores. Characterization of Dd31 extends the known temporal dependent sequence of molecular differentiations to sporulation. 相似文献
8.
Nuclei isolated from myxamoebae and differentiating cells (slug stage) of Dictyostelium discoideum contain similar ratios of DNA, RNA and protein (1:8:29) and acid soluble proteins present in amounts equal in weight to the nuclear DNA can be extracted therefrom. On urea polyacrylamide gels these basic proteins were shown to be very similar with the exception of one band, present in the myxamoebae, which was virtually absent from the differentiating cells. 相似文献
9.
10.
11.
Rapid accumulation and disappearance of plasma membrane proteins during development of wild-type and mutant strains of Dictyostelium discoideum 总被引:8,自引:0,他引:8
Plasma membranes were purified from the cellular slime mold Dictyostelium discoideum at different developmental stages and the protein compositions compared. The protein components of the plasma membrane of vegetative cells are largely conserved during development. Specific morphogenetic events are accompanied by synthesis and accumulation of several new proteins which are subsequently lost as development progresses. Proteins with apparent molecular weights of 38,000, 36,500 and 10,000 to 12,000 rapidly accumulate during the first six hours of development and then disappear from the plasma membrane after 12 hours. Later in development, several new high molecular weight proteins are synthesized and appear in the membrane. The pattern of accumulation of membrane proteins in wild-type and mutant strains suggests that appearance of membrane proteins is linked to a dependent sequence of events. 相似文献
12.
Cell behavior during formation of prestalk/prespore pattern in submerged agglomerates of Dictyostelium discoideum 总被引:1,自引:0,他引:1
When cells dissociated from Dictyostelium discoideum slugs were cultured in roller tubes, they formed agglomerates in which prestalk cells were initially dispersed but soon sorted out to the center and then moved to the edge to reconstitute the prestalk/prespore pattern. To examine the mechanism of sorting out, individual prestalk cells were traced by a videotape recorder. The radial component of the rate of movement toward the center of the presumptive prestalk region was calculated. Prestalk cells did not move randomly, but rather directionally toward the center. Their movement was pulsatile, with a period of ca. 15 min, and accompanied by occasional formation of cell streams, thus resembling the movement observable during cell aggregation. These results favor the idea that prestalk cells sort out to the prestalk region due to differential chemotaxis rather than differential adhesiveness. After formation of the prestalk/prespore pattern, the prestalk region rotated along the circumference of the agglomerates. This appears comparable to migration of slugs on the substratum, the rate of rotation being similar to that of slug migration. To examine the processes of pattern formation during development, washed vegetative cells were cultured in roller tubes. Prespore cells identified by antispore immunoglobulin initially appeared randomly within the agglomerates, but then nonprespore cells accumulated in the center and finally moved to the edge to establish the prestalk/prespore pattern, the processes being similar to those of pattern reconstruction with differentiated prestalk and prespore cells. 相似文献
13.
14.
Actin-associated proteins in Dictyostelium discoideum 总被引:3,自引:0,他引:3
The cellular slime mold Dictyostelium discoideum is becoming the premier system for the explication of the biochemical and cellular events that occur during motile processes. Proteins associated with the actin cytoskeleton, in particular, appear to play key roles in cellular responses to many external stimuli. This review summarizes our present understanding of the actin-associated proteins in Dictyostelium, including their in vitro activities and their structural and/or functional analogues in mammalian cells. 相似文献
15.
Adrian J. Harwood Anne E. Early Keith A. Jermyn Jeffrey Williams 《Differentiation; research in biological diversity》1991,46(1):7-13
Abstract. We show that the anterior, prestalk region of the Dictyostelium slug contains cells which express, or have expressed, a prespore-specific marker. We term these cells prespore-like cells (PLC). In newly formed slugs there is a sharp prespore/prestalk boundary, with very few PLC, but after several days of migration the clear demarcation between prespore and prestalk zones breaks down because the number of PLC increases dramatically. This is consistent with previous observations showing there to be rapid interchange of cells between the prestalk and prespore regions. This is not, however, their only source, as a scattering of PLC appear when separate prestalk and prespore regions first become apparent at the time of tip formation. Also, at culmination, there is respecification of prespore cells at the pre-stalk/prespore boundary to form part of the mature stalk. The existence of these cells, and of PLC, may explain why we find prespore-specific mRNAs in mature stalk cells. 相似文献
16.
L H Browne H Sadeghi D Blumberg K L Williams C Klein 《Development (Cambridge, England)》1989,105(3):657-664
117 antigen is a glycoprotein expressed on the surface of D. discoideum cells at aggregation. It then disappears and is later re-expressed on the surface of a subpopulation of cells at culmination, the terminal differentiation stage (Sadeghi et al. 1987). A cDNA clone was used to show that the appearance of cell surface 117 antigen accurately reflects the expression of the 117 gene as measured by mRNA levels. It was also shown that during multicellular development there is a reciprocal relationship between the levels of 117 mRNA and the mRNA which codes for prespore surface glycoprotein, PsA. Dual parameter flow cytometry was used to demonstrate that the 117 antigen is found on the surface of maturing prespore cells after the PsA glycoprotein disappears, but that it is not found on mature spores. Using three monoclonal antibodies which identify respectively 117 antigen, PsA, and MUD3 antigen (a spore coat glycoprotein--probably Sp96), two new stages of final spore maturation were defined. These results indicate that there is a recapitulation of at least one aggregative cell surface glycoprotein in the prespore subpopulation of cells as they rise up the stalk during final spore development. This raises the possibility that culmination, which involves complex three dimensional morphogenetic movements not unlike those observed during animal embryogenesis, involves components of the two-dimensional pattern seen during aggregation. 相似文献
17.
Changes in erythroid membrane proteins during erythropoietin-mediated terminal differentiation 总被引:9,自引:0,他引:9
Membrane and membrane skeleton proteins were examined in erythroid progenitor cells during terminal differentiation. The employed model system of erythroid differentiation was that in which proerythroblasts from mice infected with the anemia-inducing strain of Friend virus differentiate in vitro in response to erythropoietin (EP). With this system, developmentally homogeneous populations of cells can be examined morphologically and biochemically as they progress from proerythroblasts through enucleated reticulocytes. alpha and beta spectrins, the major proteins of the erythrocyte membrane skeleton, are synthesized in the erythroblasts both before and after EP exposure. At all times large portions of the newly synthesized spectrins exist in and are turned over in the cytoplasm. The remaining newly synthesized spectrin is found in a cellular fraction containing total membranes. Pulse-chase experiments show that little of the cytoplasmic spectrins become membrane associated, but that the proportion of newly synthesized spectrin which is membrane associated increases as maturation proceeds. A membrane fraction enriched in plasma membranes has significant differences in the stoichiometry of spectrin accumulation as compared to total cellular membranes. Synthesis of band 3 protein, the anion transporter, is induced only after EP addition to the erythroblasts. All of the newly synthesized band 3 is membrane associated. A two-dimensional gel survey was conducted of newly synthesized proteins in the plasma membrane enriched fraction of the erythroblasts as differentiation proceeded. A majority of the newly synthesized proteins remain in the same proportion to each other during maturation; however, a few newly synthesized proteins greatly increase following EP induction while others decrease markedly. Of the radiolabeled proteins observed in two dimensional gels, only the spectrins, band 3 and actin become major proteins of the mature erythrocyte membrane. Examination of total proteins of the plasma membrane enriched fractions of EP-treated erythroblasts using silver staining and 32P autoradiography show that many proteins and phosphoproteins are selectively eliminated from this fraction late in the course of differentiation during the reticulocyte stage. The selective removal of many proteins at the reticulocyte stage of development combined with previous selective synthesis and accumulation of some specific proteins such as alpha and beta spectrin and band 3 in the differentiating erythroblasts lead to the final mammalian erythrocyte membrane structure. 相似文献
18.
Akira Hase 《Archives of biochemistry and biophysics》1982,219(1):21-29
The phospholipid composition of Dictyostelium discoideum cells was determined at various stages of development by two-dimensional, thin-layer chromatography and reaction thin-layer chromatography. Major phospholipids of D. discoideum which were detectable throughout all stages of development were ethanolamine phosphoglyceride and choline phosphoglyceride. Ethanolamine phosphoglyceride and choline phosphoglyceride were found as their plasmalogen forms at 45–58 and 10–24%, respectively. There were no qualitative changes in phospholipid composition during the development, but quantitative changes did occur. The relative content of ethanolamine phosphoglyceride in the total phospholipids gradually decreased from 60% at the vegetative stage to 44% at the 1-day-sorocarp stage. In contrast, choline phosphoglyceride gradually increased from 27% at the vegetative stage to 48% at the preculmination stage, and then gradually decreased to 43% during the culmination. The decrease in ethanolamine phosphoglyceride content during the middle and late development was due mainly to the decreased amount of its plasmalogen form but the increase of choline phosphoglyceride was independent of quantitative changes of its plasmalogen form. Other minor components of phospholipid did not show significant changes in their levels. The causes of these changes in contents of ethanolamine phosphoglyceride and choline phosphoglyceride were examined by label and chase experiments with [3H]ethanolamine and [14C]choline. It seems that one-third to one-half of the increased amount of choline phosphoglyceride was due to stepwise methylation of ethanolamine phosphoglyceride, and the remaining two-thirds to one-half was caused by de novo synthesis of choline phosphoglyceride from CDP-choline and diglyceride. 相似文献
19.
20.
Plasma membrane proteins of the cellular slime mold Dictyostelium discoideum were characterized by two-dimensional polyacrylamide gel electrophoresis using a variety of labeling techniques and a microcomputer-based videodensitometer. Algorithms for the determination of molecular weights and isoelectric points were developed to aid in the comparison of polypeptides from different autoradiographs, Coomassie blue-stained gels, and Western blots. Cell homogenates were compared to plasma membranes isolated by a silica density perturbation technique and to cytoskeletons obtained by nonionic detergent extraction. Plasma membrane proteins were distinguished from subcellular contaminants by lactoperoxidase-catalyzed radioiodination, by selective labeling with N-hydroxysuccinimidyl-2-iminobiotin, and by quantitatively determining the enrichments of individual polypeptides from gels of plasma membrane proteins relative to their counterparts in gels of total cell lysate proteins. In contrast to defining plasma membrane purity by measuring a representative marker enzyme activity, the quantitative two-dimensional gel analysis strategy presented allowed for a rigorous evaluation of the enrichments of all detectable polypeptides in the subcellular fraction. Quantitative two-dimensional gel analysis avoided problems encountered with marker enzyme activation or inhibition during subcellular fractionation as enrichments were based solely on polypeptide amounts. It was also capable of identifying a wider spectrum of plasma membrane proteins than any of the labeling techniques employed in this study. A high resolution two-dimensional gel catalog was generated containing information about plasma membrane protein orientation in the bilayer, association with the cytoskeleton, phosphorylation state, glycosylation state, copy number, isoelectric point, and molecular weight. 相似文献