首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We aimed to clarify if the thermophilic Campylobacter lari organisms including urease-negative (UN) C. lari and urease-positive thermophilic Campylobacter (UPTC) can be differentiated at the species and/or subspecies levels by employing the full-length flaA gene and flaA short variable region (SVR) nucleotide sequence information or not. Thermophilic Campylobacter isolates (n?=?45) including UN C. lari (n?=?17), UPTC (n?=?18), and Campylobacter jejuni (n?=?10) were well discriminated at the isolate level by the unweighted pair group method using arithmetic means analysis and neighbor joining procedures constructed based on the full-length flaA gene and flaA SVR nucleotide sequence information. Thus, these procedures may possibly be useful for epidemimological studies for C. lari and C. jejuni.  相似文献   

2.
A novel strategy for identification of Carnobacterium food isolates based on restriction fragment length polymorphism (RFLP) of PCR-amplified 16S-23S ribosomal intergenic spacer regions (ISRs) was developed. PCR amplification from all Carnobacterium strains studied always yielded three ISR amplicons, which were designated the small ISR (S-ISR), the medium ISR (M-ISR), and the large ISR (L-ISR). The lengths of these ISRs varied from one species to another. Carnobacterium divergens NCDO 2763(T) and C. mobile DSM 4849(T) generated one major S-ISR band (ca. 400 bp) and minor M-ISR and L-ISR bands (ca. 500 and ca. 600 bp, respectively). The ISRs amplified from C. gallinarum NCFB 2766(T) and C. piscicola NCDO 2762(T) were larger (S-ISR, ca. 600 bp; M-ISR, ca. 700 bp; and L-ISR, ca. 800 bp). The L-ISR contained two tDNAs coding for tRNA(Ile) and tRNA(Ala) genes. The M-ISR included one tRNA(Ala) gene, and the S-ISR did not contain a tDNA gene. The RFLP scheme devised involves estimation of variable PCR product sizes together with HinfI, TaqI, and HindIII restriction analysis. Forty-two isolates yielded four unique band patterns that correctly resolved these isolates into four Carnobacterium species. This method is very suitable for rapid, low-cost identification of a wide variety of Carnobacterium species without sequencing.  相似文献   

3.
AIMS: To clone and sequence the 16S-23S ribosomal DNA (rDNA) internal spacer region (ISR) from Micrococcus luteus. METHODS AND RESULTS: The primer pair for 16S-23S rDNA ISR amplified a fragment of about 850 bp in length for two strains, JCM3347 and JCM3348 and a fragment of about 790 bp for a strain, ATCC9341. After sequencing the ISRs were identified by the comparison of the ISRs and the flanking regions of ISR. CONCLUSIONS: Although the sequence difference of the ISR occurred at only one position between the two JCM strains, the highly variable length (440 and 370 bp) and sequence similarity (about 40%) were demonstrated between the ISRs of the two JCM strains and a ATCC strain. SIGNIFICANCE AND IMPACT OF THE STUDY: A CCTCCT sequence was first detected at the 3'-end of the 16S rDNA of the three strains. Moreover, highly similar sequence to the 21-bp region containing a putative rRNA processing site was observed in the ISR of the three strains. Interestingly, no intercistronic tRNAs were demonstrated in the ISRs from the three strains.  相似文献   

4.
We aimed to clarify if Campylobacter lari exerts a cytolethal distending toxin (CDT) effect on HeLa cells. Campylobacter cell lysates (CCLys) from C. jejuni 81-176 and urease-positive thermophilic Campylobacter (UPTC) CF89-12 and UPTC NCTC12893 isolates were shown to exert a CDT effect on HeLa cells with morphological changes examined by Giemsa staining and microscopy. However, Campylobacter lari JCM2530(T) isolate showed no effect. In addition, Campylobacter cell culture supernatant wash gave low or absent toxic effects with both C. jejuni and C. lari organisms. When western blot analysis was carried out to clarify if there was a CDTB effect in the CCLys and soluble fractions from Campylobacter isolates, which had a CDT effect on HeLa cells or did not have any effect, anti-recombinant CjCDTB antibodies identified an immunoreactively positive signal at around approximately 25 kDa on all the C. lari isolates examined, as well as the C. jejuni 81116 strain. Thus, all the Campylobacter isolates including those without any CDT effect were shown to express CDTB at the translational level. (? 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).  相似文献   

5.
Vibrio parahaemolyticus contains 11 rRNA operons each including one of six 16S-23S rRNA gene intergenic spacer classes differing in size and nucleotide sequence. Some of the spacer classes may differ between isolates. We observed that the differences in the spacers between isolates are generally in two spacer classes present in single copies in the genome, one class containing tRNA(Ala) and tRNA(Glu) and the other tRNA(Glu) exclusively. Moreover, these differences are due to indels located nearby their tRNA(Glu). Comparison of the nucleotide sequence between spacer classes suggests that intragenomic nonreciprocal recombination causes the size variations observed in the spacer regions of V. parahaemolyticus strains.  相似文献   

6.
AIMS: To clone and sequence the 16S rDNA and 16S-23S rDNA internal spacer region (ISR) from urease-positive thermophilic Campylobacter (UPTC). METHODS AND RESULTS: The primer sets for 16S rDNA and 16S-23S rDNA ISR amplified almost the full length of 16S rDNA and 16S-23S rDNA ISR. About 1500 bp for 16S rDNA and about 720 bp for 16S-23S rDNA ISR of the rrn operon of four strains of UPTC were identified after molecular cloning and sequencing. CONCLUSIONS: The four strains and CCUG18267 of UPTC showed approximately 99% sequence homology of 16S rDNA to each other, 96-97% to Camp. coli, 97-98% to Camp. jejuni and 97-98% to Camp. lari. SIGNIFICANCE AND IMPACT OF THE STUDY: For the first time, the nucleotide sequence of 16S-23S rDNA ISR of UPTC has been analysed. The sequence of ISR was almost identical among the four strains of UPTC. It is interesting that the UPTC intercistronic tRNAs demonstrated an order of tRNA of 5'-16S-tRNAAla-tRNAIle-23S-3' in the organisms.  相似文献   

7.
PCR-ribotyping, a typing method based on size variation in 16S-23S rRNA intergenic spacer region (ISR), has been used widely for molecular epidemiological investigations of C. difficile infections. In the present study, we describe the sequence diversity of ISRs from 43 C. difficile strains, representing different PCR-ribotypes and suggest homologous recombination as a possible mechanism driving the evolution of 16S-23S rRNA ISRs. ISRs of 45 different lengths (ranging from 185 bp to 564 bp) were found among 458 ISRs. All ISRs could be described with one of the 22 different structural groups defined by the presence or absence of different sequence modules; tRNAAla genes and different combinations of spacers of different lengths (33 bp, 53 bp or 20 bp) and 9 bp direct repeats separating the spacers. The ISR structural group, in most cases, coincided with the sequence length. ISRs that were of the same lengths had also very similar nucleotide sequence, suggesting that ISRs were not suitable for discriminating between different strains based only on the ISR sequence. Despite large variations in the length, the alignment of ISR sequences, based on the primary sequence and secondary structure information, revealed many conserved regions which were mainly involved in maturation of pre-rRNA. Phylogenetic analysis of the ISR alignment yielded strong evidence for intra- and inter-homologous recombination which could be one of the mechanisms driving the evolution of C. difficile 16S-23S ISRs. The modular structure of the ISR, the high sequence similarities of ISRs of the same sizes and the presence of homologous recombination also suggest that different copies of C. difficile 16S-23S rRNA ISR are evolving in concert.  相似文献   

8.
Clostridium difficile is a major spore-forming environmental pathogen that causes serious health problems in patients undergoing antibiotic therapy. Consequently, reliable and sensitive methods for typing individual strains are required for epidemiological and environmental studies. Ribotyping is generally considered the best method, but it fails to account for sequence diversity which might exist in intergenic 16S-23S rRNA spacer regions (ISRs) within and among strains of this organism. Therefore, this study was undertaken to compare the sequence of each individual ISR in five strains of C. difficile to explore the extent of this diversity and see whether such information might provide the basis for more sensitive and discriminatory strain typing methods. After targeted PCR amplification, cloning, and sequencing, the diversity of the ISRs was used as a measure of rRNA operon copy number. In C. difficile strains 630, ATCC 43593, A, and B, 11, 11, 7, and 8 ISR length variants, respectively, were found (containing different combinations of sequence groups [i to xiii]), suggesting 11, 11, 7, and 8 rrn copies in the respective strains. Many ISRs of the same length differed markedly in their sequences, and some of these were restricted in occurrence to a single strain. Most of these ISRs did not contain any tRNA genes, and only single copies of the tRNA(Ala) gene were found in those that did. The presence of ISR sequence groups (i to xiii) varied between strains, with some found in one, two, three, four, or all five strains. We conclude that the intergenic 16S-23S rRNA spacer regions showed a high degree of diversity, not only among the rrn operons in different strains and different rrn copies in a single strain but also among ISRs of the same length. It appears that C. difficile ISRs vary more at the inter- and intragenic levels than those of other species as determined by empirical comparison of sequences. The precise characterization of these sequences has demonstrated a high level of mosaic sequence block rearrangements that are present or absent in multiple strain-variable rrn copies within and between five different strains of C. difficile.  相似文献   

9.
AIMS: The organization of ribosomal RNA (rrn) operons in Lactobacillus sanfranciscensis was studied in order to establish an easy-to-perform method for identification of L. sanfranciscensis strains, based on the length and sequence polymorphism of the 16S-23S rDNA intergenic spacer region (ISR). METHODS AND RESULTS: PCR amplification of the 16S-23S rDNA ISRs of L. sanfranciscensis gave three products distinguishing this micro-organism from the remaining Lactobacillus species. Sequence analysis revealed that two of the rrn operons were organized as in previously reported lactobacilli: large spacer (L-ISR), containing tRNA(Ile) and tRNA(Ala) genes; small spacer (S-ISR) without tRNA genes. The third described spacer (medium, M-ISR), original for L. sanfranciscensis, harboured a tRNA-like structure. An oligonucleotide sequence targeting the variable region between tDNA(Ile) and tDNA(Ala) of L. sanfranciscensis L-ISR was approved to be suitable in species-specific identification procedure. Analysis by pulse-field gel electrophoresis of the chromosomal digest with the enzyme I-CeuI showed the presence of seven rrn clusters. Lactobacillus sanfranciscensis genome size was estimated at c. 1.3 Mb. CONCLUSIONS: Direct amplification of 16S-23S ISRs or PCR with specific primer derived from L-ISR showed to be useful for specific typing of L. sanfranciscensis. This was due to the specific rrn operon organization of L. sanfranciscensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have reported a rapid procedure for L. sanfranciscensis identification based on specific structures found in its rrn operon.  相似文献   

10.
Some Clostridium butyricum strains have been used as probiotics for both humans and animals. Strain-specific identification is necessary for the manufacturing process of probiotics. The aim of this study was to determine whether there are sufficient genetic variations in 16S-23S intergenic spacer regions (ISRs) to discriminate C. butyricum at the biovar level. We amplified ISRs from five reference strains, a probiotic strain (MIYAIRI 588) and 22 isolates, and we classified them into four groups on the basis of amplification patterns (type A through D). However, amplification of ISRs is not sufficient for discriminating strains. Moreover, we compared genetic structures of these ISRs. Sequence analysis revealed that the size variations of ISRs were generated by the insertion of tRNA genes and unique sequences into the internal portion, while the external portions were highly conserved. On the basis of the highly conserved nucleotide sequences within the ISRs, we developed a PCR primer set specific to C. butyricum. In addition, the PCR primer designed from the unique inserted sequence in type B strain was useful to differentiate probiotic strains at the biovar level.  相似文献   

11.
Molecular cloning, nucleotide sequencing, and characterization of the flaA gene from additional isolates of urease-positive thermophilic Campylobacter (UPTC) were performed. These isolates were obtained from the natural environment in Northern Ireland (n?=?9 from mussels) and in England (n?=?1 from sea water). All isolates carried the shorter flaA gene, [open reading frames (ORFs), 1,461 to 1,503?base pairs], without any internal termination codons, and did not carry any flaA pseudogenes. The UPTC isolates were well discriminated by the neighbor joining (NJ) phylogenetic tree constructed based on the putative flaA genes ORFs nucleotide sequence information. In addition, the NJ tree constructed based on the flaA-short variable region sequence information discriminated the Campylobacter lari isolates with a similar degree of discrimination power.  相似文献   

12.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNA(Ala) and tRNA(Ile), which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

13.
16S~23S RDNA间区在链球菌和流感嗜血杆菌分类中的应用   总被引:1,自引:0,他引:1  
鲁辛辛  杨持  杨宏欣 《遗传》2003,25(2):189-194
利用16S~23S rDNA间区(intergenic spacer regions,ISR)在不同细菌中拷贝数、碱基排列、序列长度及所含tRNA基因种类和数目的差异,对15株链球菌和流感嗜血杆菌进行属、种、型和株系的分类鉴定。在16S rDNA的3′端和23S rDNA的5′端的保守区中合成引物,PCR扩增16S~23S rDNA ISR序列,对多态片段切胶纯化直接测序。在GenBank上查找对应细菌的ISR序列。用DNAMAN软件进行系统进化分析。链球菌属为单拷贝16S~23Sr RNA ISR、有一个tRNAAla基因编码区、分子大小在269~446bp之间,序列分成4个保守区和4个可变区,可变区碱基排列方式和数目的不同是种分类的依据。7株链球菌的同源率在78%~88%。同种异株的差异反映在碱基的插入和缺失上。流感嗜血杆菌各生物型均为2个拷贝的ISR,小片段为514~519bp,编码1个tRNAGlu基因,有3个狭窄可变区。大片段富含A T碱基,在I、II和IV型中分别是868、848和856bp,编码一个tRNAIle基因和一个tRNAAla基因。不同生物型小分子ISR与标准菌株比较,同源性在97.3%~99.6 %之间。 ISR作为细菌分类的目的基因具有属、种、型和株特异性与灵敏性。简单的基因分离分析技术为认识病原微生物提供了更多的机会。 Abstract:To facilitate species level identification of bacteria without the requirement of presumptive identification,the paper describes a rapid identification method of bacteria by amplification and direct sequencing 16S~23S rDNA intergenic spacer regions (ISR) of the pathogens which cause the upper respiratory tract infective disease by Streptococcus and Haemophilus.Three pairs of primer targeting conserved sequences flanking the 3′ end of 16S and the 5′end of 23S rRNA were used to amplify 16S~23S rRNA ISR of 7 streptococcus strains and 8 Haemophilus strains.The PCR products were separated by 1% agarose gel electrophoresis and the polymorphisms fragments were purified with the Wizard PCR Min-Prep Kit (Promega) and Protocol-SK131(Sangon).The nucleotide sequences of ISR inserts were determined by using the XEQTM DTCS Kit——Terminator Cycle Sequencing and a CEQTM 2000XL DNA Analysis system (Backman Coulter) automatic DAN sequencer.Then those sequences were compared with known seqnences on the GenBank.The alignment of nucleotide sequence,evolutionary distances and phylogenetic tress were analyzed by software DANMAN version 4.0.The PCR products were showed polymorphism patterns with agarose gel.One band was contained in streptococcus genus.The significant variation was found among the spacer sequences of different species in Streptococcus with the lengths of the spacer varying from 269 to 446bp.All the ISR of the streptococcal species had a tRNA Ala gene in the spacer and the sequence identities varied from 78 to 88% within genera.It was found that some spacer sequence blocks were highly conserved between operons of a genome,whereas the presence of others was variable,three regions showed significant spatial variation.Most of the differences between the sequences came from several bases insertions/deletions and substitutions.There are two major bands in the Haemophilus biotypes(515 and 884bp),the small ISR amplicon contained one tDNA coding for tRNAGlu.In contrast to the large one contained two tRNA genes coding for tRANAla and tRNAIle.Two regions of repeating motifs with only A or T were present in higher copy numbers between tRANAla and tRNAIle.The phylogenetic trees varied from 97.5 to 98.8%.The PCR and direct sequencing of 16S~23S rRAN ISR were successful in the pathogen species identification.  相似文献   

14.
The PCR amplicons (about 1450 bp in length) of flaA gene fragments of 11 isolates of urease-positive thermophilic Campylobacter (UPTC) isolated from the natural environment not including wild birds in Northern Ireland were demonstrated to be shorter than those of C. jejuni 81116 and six isolates of C. jejuni and C. coli (about 1700 bp) isolated in Northern Ireland and Japan. When the nucleotide lengths of the possible open reading frame (ORF) of the flaA genes were determined, those from the 11 UPTC isolates were estimated to be 1464-1503 bp, and those from the six C. jejuni and C. coli isolates and C. jejuni 81116 strain to be 1716-1728 bp. Nucleotide sequence and deduced amino acid sequence alignments of the possible ORFs demonstrated that the ORFs from the 11 UPTC isolates lack about 80 amino acid residues, mainly from the approximate residue numbers 390-470 of the large variable region in the flaA protein of the seven isolates of C. jejuni and C. coli, and do not have any internal termination codons. High amino acid sequence similarity of both amino- and carboxy-termini of the ORFs of the flaA gene was demonstrated between the 11 isolates of UPTC and the 7 isolates of C. jejuni and C. coli. The 11 UPTC isolates examined were strongly suggested to possess a shorter flaA gene without any internal termination codons.  相似文献   

15.
16.
Three restriction enzymes ApaI, SalI and SmaI, among nine enzymes tested, were found to produce distributions of DNA fragments which were useful for analysis of chromosome-sized DNA from thermophilic Campylobacter laridis by pulsed-field gel electrophoresis. From experiments with C. laridis JCM2530T and four isolates of C. laridis, the size of the genome of C. laridis was calculated to range from 1,590 to 1,700 kb, with a mean of 1,640 kb. An SmaI restriction map was derived by the partial digestion of the DNA from C. laridis JCM2530T.  相似文献   

17.
To determine the variability of the 16S-23S rRNA intergenic spacer region (ISR) of the newly described Acinetobacter baylyi, 88 clones containing ISR amplicons were screened and 14 chosen for further analysis. Two different sized 16S-23S rRNA ISRs were distinguished comprising five variable and four conserved nucleotide blocks. The major regions of heterogeneity between the different sized ISRs were due to blocks of substitutions with unique secondary structures interspersed with nucleotide substitutions, rather than differences caused by presence or absence of tRNA genes, which is often the case. Recombination events causing shuffling of nucleotide blocks are considered the most likely explanation for the mosaic structure observed between the different copies of the ISR. Single base differences present in the long ISR (LISR) were then exploited in attempts to detect possible heterogeneity between rrn copies in Acinetobacter baylyi but variability was not detected by RFLP analysis of LISR-specific PCR products. These primers were shown to be highly specific for 3 Acinetobacter baylyi strains based on LISR sequence homogeneity.  相似文献   

18.
There are only two reports in the literature demonstrating the presence of Campylobacter spp. in marine mammals. One report describes the isolation of a new species, Campylobacter insulaenigrae sp. nov., from three harbor seals (Phoca vitulina) and a harbor porpoise (Phocoena phocoena) in Scotland, and the other describes the isolation of Campylobacter jejuni, Campylobacter lari, and an unknown Campylobacter species from northern elephant seals (Mirounga angustirostris) in California. In this study, 72 presumptive C. lari and unknown Campylobacter species strains were characterized using standard phenotypic methods, 16S rRNA PCR, and multilocus sequence typing (MLST). Phenotypic characterization of these isolates showed them to be variable in their ability to grow either at 42 degrees C or on agar containing 1% glycine and in their sensitivity to nalidixic acid and cephalothin. Based on both 16S rRNA PCR and MLST, all but 1 of the 72 isolates were C. insulaenigrae, with one isolate being similar to but distinct from both Campylobacter upsaliensis and Campylobacter helveticus. Phylogenetic analysis identified two C. insulaenigrae clades: the primary clade, containing exclusively California strains, and a secondary clade, containing some California strains and all of the original Scottish strains. This study demonstrates the inability of phenotypic characterization to correctly identify all Campylobacter species and emphasizes the importance of molecular characterization via 16S rRNA sequence analysis or MLST for the identification of Campylobacter isolates from marine mammals.  相似文献   

19.
AIMS: To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. METHODS AND RESULTS: The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. CONCLUSIONS: There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.  相似文献   

20.
Extremely long PCR fragments were generated by PCR amplification of ITS and 5.8S rDNA from Cochlodinium polykrikoides against other dinoflagellates. These patterns were consistent among geographically different isolates of C. polykrikoies. DNA sequencing reactions revealed that the PCR products were 1,166 bp in length and consisted of 813 bp of ITS1, 160 bp of 5.8S rDNA and 193 bp of ITS2. Thus, the long length was caused mainly by the long ITS1 sequence. Cryptically, the ITS1 contained a tract of 101 bp that occurs six times in tandem. The six repeated elements had identical nucleotide sequences. ITS1, therefore, separated three distinct regions: the 5' end (122 bp), the six parallel repeats (606 bp), and the 3' region (85 bp). Interestingly, both the single and six-repeat sequences should be palindrome-like sequences. In inferred secondary structures, both repeat sequences formed a long helical structure. This is the first reported discovery of comparatively long internal repeats in the ITS1 of dinoflagellates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号