首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of different alkyl chain lengths of ionic liquids 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium chloride, on the catalytic activity, thermal stability and deactivation kinetics of horseradish peroxidase were studied in the temperature range of 45–85 °C. The presence of 1-ethyl- and 1-butyl-ionic liquids up to 25 % (w/v) did not affect significantly the enzyme activity at 25 °C, whereas the addition of 1-hexyl-solvent resulted in lower activity of enzyme. Typical biphasic deactivation profiles were obtained and adequately fitted by a bi-exponential equation. When increasing ionic liquids concentration up to 25 % (w/v), the second phase of deactivation became more prominent, till leading to apparent first-order kinetics. Occurrence of activity regain, following thermal deactivation was found, reaching up 60–80 % of the initial activity, especially in 1-hexyl-3-methylimidazolium chloride. Activity regain was particularly noticeable in the first phase of deactivation. Temperature sensitivity of the Soret band maxima indicated that the enzyme prepared in buffer or 1-hexyl-3-methylimidazolium chloride had similar conformational changes in the haem region, but no correlations were found with activity decrease.  相似文献   

2.
Five different ionic liquids, based on dialkylimidazolium and quaternary ammonium cations associated with perfluorinated and bis (trifluoromethyl) sulfonyl amide anions, were used as reaction media to synthesize N-acetyl-L-tyrosine propyl ester by transesterification with alpha-chymotrypsin at 2% (v/v) water content at 50 degrees C. The synthetic activity was reduced by the increase in alkyl chains length of cations and by increases in anion size, which was related to the decrease in polarity. Incubation of the enzyme (with and without substrate) in ionic liquids exhibited first-order deactivation kinetics at 50 degrees C, allowing determination of deactivation rate constants and half-life times (1-3 h). Ionic liquids showed a clear relative stabilization effect on the enzyme, which was improved by increased chain length of the alkyl substituents on the imidazolium ring cations and the anion size. This effect was 10-times enhanced by the presence of substrate. For example, 1-butyl-3-methylimidazolium hexafluorophosphate increased the alpha-chymotrypsin half-life by 200 times in the presence of substrate with respect to the 1-propanol medium. These results show that ionic liquids are excellent enzyme-stabilizing agents and reaction media for clean biocatalysis in non-conventional conditions.  相似文献   

3.
Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid–protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6–3.5 M, which corresponds to 10–60% v/v). Interactions between GB1 and [C4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C4-mim]Br were assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid–protein interactions.  相似文献   

4.
Biocatalytic transformations in ionic liquids   总被引:19,自引:0,他引:19  
Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems.  相似文献   

5.
The low solubility of l-methionine and low activity of enzyme are the major hurdles during l-methionine production by the enzymatic conversion approach. In this study, we investigated various ionic liquids (ILs) as additives for the enzyme-catalyzed production of l-methionine from O-acetyl L-homoserine and methyl mercaptan. Among the ILs evaluated, we found that tetraalkylammonium hydroxide ILs enhanced the solubility of l-methionine as well as the activity of the enzyme. Methionine solubility decreased with increasing alkyl chain length but increased with increasing IL concentration. l-methionine could be dissolved up to 232 g/L in 10% tetramethylammonium hydroxide solution. The enzyme O-acetylhomoserine aminocarboxypropyltransferase reached its maximum activity when the IL concentration was 2.5% (3 times higher than that without ILs) and significantly decreased with increasing IL concentration. The stability of the enzyme also decreased rapidly after 2 h of incubation regardless of the presence or absence of ILs. Nevertheless, 74 g/L of l-methionine could be produced in a reaction media containing 2.5% tetraethylammonium hydroxide compared to 35 g/L of l-methionine obtained in a reaction system without ILs.  相似文献   

6.
The immobilization of lipase from Candida rugosa, using ionic liquids as additives to protect the inactivation of lipase by released alcohol and shrinking of gel during sol–gel process, was investigated. The influence of various factors, such as structure of ionic liquids, content of ionic liquids and types of precursor in the sol–gel process on the activity and stability of immobilized lipase was also studied. The highest hydrolytic activity of immobilized lipase was obtained when the hydrophilic ionic liquid, [C2mim][BF4], was used as an additive, while the highest stability of immobilized lipase was obtained by using hydrophobic ionic liquid, [C16mim][Tf2N]. Therefore, the binary mixtures of these ionic liquids as additives were used to obtain the optimal immobilized lipase, which shows both high activity and stability. The hydrolysis and esterification activities of lipase co-immobilized with the mixture of 1:1 at molar ratio of [C2mim][BF4] and [C16mim][Tf2N] were 10-fold and 14-fold greater than in silica gel without ionic liquids (ILs), respectively. After 5 days incubation of this immobilized lipase in n-hexane at 50 °C, 84% of initial activity was remained, while the residual activity of the lipase immobilized without ILs was 28%.  相似文献   

7.
Porous silica particles (PSP) modified with different surface active groups were prepared for covalent immobilization of porcine pancreas lipase (PPL). Organosilanes combined with reactive end amino-group or epoxy-group were employed for the modification through silanization process. Polyethylenimine and long chain alkyl silane coupling agent were also used in the modification process. Several modification-immobilization strategies were performed, while good coupling yield could be achieved within the range of 86.2–158.2 mg of native PPL per gram of the carrier. Furthermore, at higher temperature, the resulting immobilized PPL (IPPL) could successfully perform the syntheses of polycaprolactone (PCL) and poly(5,5-dimethyl-1,3-dioxan-2-one) (PDTC) in ionic liquid medium. No polymers could be obtained catalyzed by native PPL, suggesting that IPPL showed much higher catalytic activity than native PPL. Effect of different treatments on the activity of IPPL also showed the long time high temperature stability in ionic liquid medium, contributing to a good combination of immobilization and ionic liquids effect. The catalytic activity of IPPL for polymerization was closely related to both the properties of immobilized enzyme and cyclic monomer. This work would be expected to highlight further careful design of immobilized enzyme for a wide range of application, especially in biodegradable polymers syntheses.  相似文献   

8.
The stereospecific reduction of 6-Br-β-tetralone to its corresponding alcohol (S)-6-Br-β-tetralol was carried out by the yeast Trichosporon capitatum MY1890 and by the bacterium Rhodococcus erythropolis MA7213, using a range of ionic liquids chosen for the diversity of their composition. The decrease in cell viability of both types of cell upon exposure to ionic liquids was found to be between that determined for cells residing purely in fermentation media, and cells residing in a two-phase mixture of media and organic solvent (toluene). For T. capitatum MY1890 bioconversions, the water miscible hydrophilic ionic liquid [Emim][TOS] gave a reaction profile comparable to that observed in the previously studied water-ethanol (10% v/v) system, in terms of overall rate of reaction (0.2 g (prod) L-1 h-1) and conversion (100%). Of the hydrophobic ionic liquids evaluated, [Oc3MeN][BTA] gave the best conversion of 60%, but at a much reduced rate, suggesting solute mass transfer from the ionic liquid phase was rate limiting. For bioconversions carried out with R. erythropolis MA7213 employing 20% v/v [Emim][TOS] as a co-solvent, the conversion yield doubled, and a four-fold increase in initial rate was found compared to the standard ethanol co-solvent. This was attributed to improved cell viability and reduced aggregation of the R. erythropolis MA7213 compared to T. capitatum MY1890. Overall, this study demonstrates the feasibility of using ionic liquids for whole cell biocatalysis, however, no obvious link is apparent between the physico-chemical properties of ionic liquids, their influence on cell viability, and their efficacy as media for bioconversions.  相似文献   

9.
Pretreating biomass using ionic liquids (ILs) can decrease cellulose crystallinity and lead to improved hydrolysis. However, cellulase activity is often reduced in even low concentrations of ILs, necessitating complete washing between pretreatment and hydrolysis steps. To better understand how ILs interact with enzymes at the molecular scale, endoglucanase E1 from Acidothermus cellulolyticus was simulated in aqueous 1-ethyl-3-methylimidazolium chloride ([Emim]Cl). Homologs with differing surface charge were also simulated to assess the role of electrostatic interactions between the enzyme and the surrounding solvent. Chloride anions interacted with the enzyme surface via Coulomb or hydrogen bond interactions, while [Emim] cations primarily formed hydrophobic or ring stacking interactions. Cations strongly associated with the binding pocket of E1, potentially inhibiting the binding of substrate molecules. At elevated temperatures, cations also disrupted native hydrophobic contacts and caused some loss of secondary structure. These observations suggested that both cations and anions could influence enzyme behavior and that denaturing and inhibitory interactions might both be important in aqueous IL systems.  相似文献   

10.
Salt hydrate pairs were used to control water activity in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. It was shown that salt hydrate pairs behave essentially the same in ionic liquids as they do in organic solvents as long as they do not dissolve. Initial rate-water activity profiles were prepared for the immobilized Candida antarctica lipase catalyzed synthesis of 2-ethylhexyl methacrylate. The ability to use salt hydrate pairs for the control of water activity in ionic liquids should allow for improved comparison of enzyme activity and specificity in ionic liquids and conventional solvents.  相似文献   

11.
The novel technique of immobilization of beta-galactosidase on colloidal liquid aphrons (CLAs) was investigated. CLAs are oil-in-water macroemulsions stabilised by a mixture of ionic and nonionic surfactants. Enzyme retention was found to be unaffected by changes in bulk phase pH and ionic strength, indicating that beta-galactosidase immobilization was due primarily to hydrophobic interactions. However, by varying the polarity of the internal solvent core, and the charge of the surfactants used in the formation of the CLAs, it was found that immobilization could be improved to almost 100% under certain conditions indicating that electrostatic interactions also affected immobilization to a lesser degree. Upon immobilization, it was found that there was a shift in the pH optimum of the enzyme, with the immobilized enzyme showing a broader range, and a maximal activity at higher pH. The immobilized beta-galactosidase displayed normal Michaelis-Menten dependence on substrate concentration, whilst also exhibiting superactivity for increased substrate concentrations. Activation energy was determined for the CLA immobilized enzyme, and it was found to decrease indicating that a conformational change had occurred that may account for the observed increase in activity. Finally, although the temperature profile of the immobilized enzyme was similar to the free enzyme, it was very stable, with a potential half-life of 3.6 years at 30 degrees C.  相似文献   

12.
Detergent/polymer aqueous two-phase systems are studied as a fast, mild and efficient general separation method for isolation of labile integral membrane proteins. Mechanisms for phase behaviour and protein partitioning of both membrane-bound and hydrophilic proteins have been examined in a large number of detergent/polymer aqueous two-phase systems. Non-ionic detergents such as the Triton series (polyoxyethylene alkyl phenols), alkyl polyoxyethylene ethers (C(m)EO(n)), Tween series (polyoxyethylene sorbitol esters) and alkylglucosides form aqueous two-phase systems in mixtures with hydrophilic polymers, such as PEG or dextran, at low and moderate temperatures. Phase diagrams for these mixtures are shown and phase behaviour is discussed from a thermodynamic model. Membrane proteins, such as bacteriorhodopsin and cholesterol oxidase, were partitioned strongly to the micelle phase, while hydrophilic proteins, BSA and lysozyme, were partitioned to the polymer phase. The partitioning of membrane protein is mainly determined by non-specific hydrophobic interactions between detergent and membrane protein. An increased partitioning of membrane proteins to the micelle phase was found with an increased detergent concentration difference between the phases, lower polymer molecular weight and increased micelle size. Partitioning of hydrophilic proteins is mainly related to excluded volume effects, i.e. increased phase component size made the hydrophilic proteins partition more to the opposite phase. Addition of ionic detergent to the system changed the partitioning of membrane proteins slightly, but had a strong effect on hydrophilic proteins, and can be used for enhanced separation between hydrophilic proteins and membrane protein.  相似文献   

13.
The effect of ions on enzyme activity and stability usually follows the Hofmeister series (or the kosmotropicity order): kosmotropic anions and chaotropic cations stabilize enzymes while chaotropic anions and kosmotropic cations destabilize them. The effect of ionic liquids (ILs) on the enzyme activity/stability/enantioselectivity is complicated especially when there is no or little water presence in the IL media. However, when aqueous solutions of hydrophilic ILs are employed as reaction media, the enzyme seems to follow the Hofmeister series since ILs dissociate into individual ions in water.  相似文献   

14.
Lipases are well-known biocatalysts used in several industrial processes/applications. Thus, as with other enzymes, changes in their surrounding environment and/or their thermodynamic parameters can induce structural changes that can increase, decrease, or even inhibit their catalytic activity. The use of ionic compounds as solvents or additives is a common approach for adjusting reaction conditions and, consequently, for controlling the biocatalytic activity of enzymes. Herein, to elucidate the effects of ionic compounds on the structure of lipase, the stability and enzymatic activity of lipase from Aspergillus niger in aqueous solutions (at 0.05, 0.10, 0.50, and 1.00 M) of six cholinium-based ionic liquids (cholinium chloride [Ch]Cl; cholinium acetate ([Ch][Ac]); cholinium propanoate ([Ch][Prop]); cholinium butanoate ([Ch][But]); cholinium pentanoate ([Ch][Pent]); and cholinium hexanoate ([Ch][Hex])) were evaluated over 24 hr. The enzymatic activity of lipase was maintained or enhanced in the lower concentrations of all the [Ch]+-ILs (below 0.1 M). [Ch][Ac] maintained the biocatalytic behavior of lipase, independent of the IL concentration and incubation time. However, above 0.1 M, [Ch][Pent] and [Ch][Hex] caused complete inhibition of the catalytic activity of the enzyme, demonstrating that the increase in the anionic alkyl chain length strongly affected the conformation of the lipase. The hydrophobicity and concentration of the [Ch]+-ILs play an important role in the enzyme activity, and these parameters can be controlled by adjusting the anionic alkyl chain length. The inhibitory effects of [Ch][Pent] and [Ch][Hex] may be of great interest to the pharmaceutical industry to induce pharmacological inhibition of gastric and pancreatic lipases.  相似文献   

15.
Ionic-liquid buffer having phosphate anion was synthesized for the development of buffered enzymatic ionic liquid systems. Both the conformation and transesterification activity of Candida antarctica lipase B (CALB) dissolved in the hydroxyl-functionalized ionic liquids were buffer dependent. Intrinsic fluorescence studies indicated that the CALB possessed a more compact conformation in the medium consisted of ionic liquid buffer having phosphate anion and hydroxyl-functionalized ionic liquids like 1-(1-hydroxyethyl)-3-methyl-imidazolium tetrafluoroborate and 1-(1-hydroxyethyl)-3-methyl-imidazolium nitrate. High activity and outstanding stability could be obtained with the CALB enzyme in the buffered ionic liquids for the transesterification.  相似文献   

16.
Aqueous two-phase systems (ATPS) are considered as efficient downstream processing techniques in the production and purification of enzymes, since they can be considered harmless to biomolecules due to their high water content and due to the possibility of maintaining a neutral pH value in the medium. A recent type of alternative ATPS is based on hydrophilic ionic liquids (ILs) and salting-out inducing salts. The aim of this work was to study the lipase (Candida antarctica lipase B - CaLB) partitioning in several ATPS composed of ionic liquids (ILs) and inorganic salts, and to identify the best IL for the enzyme purification. For that purpose a wide range of IL cations and anions, and some of their combinations were studied. For each system the enzyme partitioning between the two phases was measured and the purification factors and enzyme recoveries were determined. The results indicate that the lipase maximum purification and recovery were obtained for cations with a C(8) side alkyl chain, the [N(CN)(2)] anion and ILs belonging to the pyridinium family. However, the highest purification parameters were observed for 1-methyl-3-octylimidazolium chloride [C(8)mim]Cl, suggesting that the IL extraction capability does not result from a cumulative character of the individual characteristics of ILs. The results indicate that the IL based ATPS have an improved performance in the lipase purification and recovery.  相似文献   

17.
Activity of mushroom tyrosinase was studied in three ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) and 1-butyl-3-methylimidazolium methylsulfate ([BMIm][MeSO4]), and was compared to that in chloroform. Kinetic parameters of the enzyme were determined and the results indicate that the enzyme in ionic liquids basically follows the same catalytic mechanism as in water, and that the ionic liquids may affect the enzyme activity by direct interacting with the enzyme and thus hindering the E–S binding due to their high hydrophilicity and polarity.  相似文献   

18.
Enzyme catalysis in ionic liquids   总被引:15,自引:0,他引:15  
Ionic liquids offer new possibilities for the application of solvent engineering to biocatalytic reactions. Although in many cases ionic liquids have simply been used to replace organic solvents, they have often led to improved process performance. Unlike conventional organic solvents, ionic liquids possess no vapor pressure, are able to dissolve many compounds, and can be used to form two-phase systems with many solvents. To date, reactions involving lipases have benefited most from the use of ionic liquids, but the use of ionic liquids with other enzymes and in whole-cell processes has also been described. In some cases, remarkable results with respect to yield, (enantio)selectivity or enzyme stability were observed.  相似文献   

19.
几种离子液体的微波法合成及其对脂肪酶催化效果的影响   总被引:1,自引:0,他引:1  
采用微波法合成9种目标离子液体,对中间体[Bmim]Br的合成条件及其离子液体对全细胞催化剂催化效果的影响进行考察.直接将产脂肪酶真菌粗状假丝酵母(Candida valida) T2细胞固定在聚氨酯颗粒中,制备固定化细胞催化剂,将其应用于合成离子液体介质中催化甲醇与大豆油酯交换反应制备生物柴油.结果表明:微波功率200 W下间隙照射100 s,中间体[Bmim]Br的收率达95.16%,有效地提高了离子液合成产率;在[Bmim]PF6离子液中固定化细胞酶催化转酯化反应30 h,大豆油的转化率达42%,反应效果较其他8种合成离子液体好;固定化细胞颗粒和[Bmim]PF6重复使用4次,其油脂转化率和酶活保持率分别达到29%和69%,表现出较好的催化反应稳定性.  相似文献   

20.
The effects of various organic solvents on penicillin acylase-catalyzed synthesis of β-lactam antibiotics (pivampicillin and ampicillin) have been investigated in water-solvent mixtures. The rates of penicillin acylase-catalyzed reactions were found to be significantly reduced by the presence of a small amount of organic solvent. In particular, the rate of enzyme catalysis was extremely low in the presence of ring-structured solvents and acids while enzyme activities were fully restored after removing the solvents. This indicates that interactions between the solvents and the enzyme are specific and reversible. To correlate the inhibitory effects of organic solvents with solvent properties the influence of solvent hydrophobicities and solvent activity on the rate of pivampicillin synthesis was examined. The reaction rate was found to decrease with increasing solvent hydrophobicities, and a better correlation was observed between the reaction rate and solvent activity. The effects of ionic strength on the synthesis of pivampicillin and ampicillin were also examined. The ionic strength dependence indicates that electrostatic interactions are involved in the binding of ionic compounds to the enzyme. On the basis of the active site structure of penicillin acylase, a possible mechanism for molecular interactions between the enzyme and organic solvents is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号