首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na+/Ca2+ exchanger is a plasma membrane protein that regulates intracellular Ca2+ levels in cardiac myocytes. Transport activity is governed by Ca2+, and the primary Ca2+ sensor (CBD1) is located in a large cytoplasmic loop connecting two transmembrane helices. The binding of Ca2+ to the CBD1 sensory domain results in conformational changes that stimulate the exchanger to extrude Ca2+. Here, we present a crystal structure of CBD1 at 2.5A resolution, which reveals a novel Ca2+ binding site consisting of four Ca2+ ions arranged in a tight planar cluster. This intricate coordination pattern for a Ca2+ binding cluster is indicative of a highly sensitive Ca2+ sensor and may represent a general platform for Ca2+ sensing.  相似文献   

2.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

3.
Effects of lipid structure on the function of the Ca2+-ATPase of skeletal muscle of sarcoplasmic reticulum are reviewed. Binding of phospholipids to the ATPase shows little specificity. Phosphatidylcholines with short (C14) or long (C24) fatty acyl chains have marked effects on the activity of the ATPase, including a change in the stoichiometry of Ca binding. Low ATPase activity in gel phase lipid follows from low rate of phosphorylation. Phosphatidylinositol 4-phosphate increases ATPase activity by increasing the rate of dephosphorylation of the phosphorylated ATPase. Stimulation is not seen with other anionic phospholipids; phosphatidic acid decreases ATPase activity in a Mg2+-dependent manner.Abbreviations di(C141)PC dimyristoleoylphosphatidycholine - di(C160)PC dipalmitoylphosphatidylcholine - di(C181)PC dioleoylphosphatidylcholine - di(Br2C180)PC dibromostearoylphosphatidylcholine - di(C241)PC dinervonylphosphatidylcholine - di(C181)PA dioleoylphosphatidic acid - di(C181)PE dioleoylphosphatidylethanolamine - Ptdlns phosphatidylinositol - PtdIns-4P phos-phatidylinositol 4-phosphate  相似文献   

4.
Electron crystallographic studies on membrane crystals of Ca2+-ATPase reveal different patterns of ATPase-ATPase interactions depending on enzyme conformation. Physiologically relevant changes in Ca2+ concentration and membrane potential affect these interactions. Ca2+ induced difference FTIR spectra of Ca2+-ATPase triggered by photolysis of caged Ca2+ are consistent with changes in secondary structure and carboxylate groups upon Ca2+ binding; the changes are reversed during ATP hydrolysis suggesting that a phosphorylated enzyme form of low Ca2+ affinity is the dominant intermediate during Ca2+ transport. A two-channel model of Ca2+ translocation is proposed involving the membrane-spanning helices M2–M5 and M4, M5, M6 and M8 respectively, with separate but interacting Ca2+ binding sites.  相似文献   

5.
Mammals express two parvalbumins-an alpha isoform and a beta isoform. In rat, the alpha-parvalbumin (alpha-PV) exhibits superior divalent ion affinity. For example, the standard free energies for Ca2+ binding differ by 5.5 kcal/mol in 0.15 M KCl (pH 7.4). High-resolution structures of the Ca2+-bound proteins provide little insight into this disparity, prompting a structural analysis of the apo-proteins. A recent analysis of rat beta-PV suggested that Ca2+ removal provokes substantial conformational changes-reorientation of the C, D, and E helices; reorganization of the hydrophobic core; reduced interdomain contact; and remodeling of the AB domain. The energetic penalty attendant to reversing these changes, it was suggested, could contribute to the attenuated divalent ion-binding signature of that protein. That hypothesis is supported by data presented herein, describing the solution structure and peptide backbone dynamics of Ca2+-free rat alpha-PV. In marked contrast to rat beta-PV, the apo- and Ca2+-loaded forms of the rat alpha isoform are quite similar. Significant structural differences appear to be confined to the loop regions of the molecule. This finding implies that the alpha-PV isoform enjoys elevated divalent ion affinity because the metal ion-binding events do not require major structural rearrangement and the concomitant sacrifice of binding energy.  相似文献   

6.
In this article the morphology of sarcoplasmic reticulum, classification of Ca(2+)-ATPase (SERCA) isoenzymes presented in this membrane system, as well as their topology will be reviewed. The focus is on the structure and interactions of Ca(2+)-ATPase determined by electron and X-ray crystallography, lamellar X-ray and neutron diffraction analysis of the profile structure of Ca(2+)-ATPase in sarcoplasmic reticulum multilayers. In addition, targeting of the Ca(2+)-ATPase to the sarcoplasmic reticulum is discussed.  相似文献   

7.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels.  相似文献   

8.
Characterization of the putative Ca2+-gated Ca2+ channel of sarcoplasmic reticulum, which is thought to mediate Ca2+-induced Ca2+ release, was carried out in order to elucidate the mechanism of Ca2+-induced Ca2+ release. Heavy and light fractions of fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle were loaded passively with Ca2+, and then passive Ca2+ efflux was measured under various conditions. The fast phase of the Ca2+ efflux depended on the extravesicular free Ca2+ concentration and was assigned to the Ca2+ efflux through the Ca2+-gated Ca2+ channel. Vesicles with the Ca2+-gated Ca2+ channels comprised about 85% of the heavy fraction and about 40% of the light fraction. The amount of Ca2+ loaded in FSR was found to be much larger than that estimated on the basis of vesicle inner volume and the equilibration of intravesicular with extravesicular Ca2+, indicating Ca2+ binding inside FSR. Taking this fact into account, the Ca2+ efflux curve was quantitatively analyzed and the dependence of the Ca2+ efflux rate constant on the extravesicular free Ca2+ concentration was determined. The Ca2+ efflux was maximal, with the rate constant of 0.75 s-1, when the extravesicular free Ca2+ was at 3 microM. Caffeine increased the affinity for Ca2+ of Ca2+-binding sites for opening the channel with only a slight change in the maximum rate of Ca2+ efflux. Mg2+ inhibited the Ca2+ binding to the sites for opening the channel while procaine seemed to inhibit the Ca2+ efflux by blocking the ionophore moiety of the channel.  相似文献   

9.
Danilo Guerini 《Biometals》1998,11(4):319-330
The Ca 2+ ATPases or Ca 2+ pumps transport Ca 2+ ions out of the cytosol, by using the energy stored in ATP. The Na + / Ca 2+ exchanger uses the chemical energy of the Na + gradient (the Na + concentration is much higher outside than inside the cell) to remove Ca 2+ from the cytosol. Ca 2+ pumps are found in the plasma membrane and in the endoplasmic reticulum of the cells. The pumps are probably present in the membrane of other organelles, but little experimental information is available on this matter. The Na + / Ca 2+ exchangers are located on the plasma membrane. A Na + / Ca 2+ exchanger was found in the mitochondria, but very little is known on its structure and sequence. These transporters control the Ca 2+ concentration in the cytosol and are vital to prevent Ca 2+ overload of the cells. Their activity is controlled by different mechanisms, that are still under investigation. A number of the possible isoforms for both types of proteins has been detected.© Kluwer Academic Publishers  相似文献   

10.
Common domain structure of Ca2+ and lipid-binding proteins   总被引:10,自引:0,他引:10  
M J Geisow 《FEBS letters》1986,203(1):99-103
The phospholipase A2 inhibitor, lipocortin, shares common sequences with three abundant Ca2+-regulated membrane binding proteins of unknown function which are present in many cell and tissue types. A two-domain model for the structure of lipocortin is described and it is suggested that the new Ca2+-regulated proteins each contain at least one lipocortin domain. The structural and biochemical properties of each protein indicate that they all directly interact with phospholipids. Potential sites of interaction with the lipocortin domain are identified on the basis of homology with phospholipid transfer proteins and phospholipase A2.  相似文献   

11.
12.
Single-channel models of intracellular Ca(2+) channels such as the inositol 1,4,5-trisphosphate receptor and ryanodine receptor often assume that Ca(2+)-dependent transitions are mediated by a constant background [Ca(2+)] as opposed to a dynamic [Ca(2+)] representing the formation and collapse of a localized Ca(2+) domain. This assumption neglects the fact that Ca(2+) released by open intracellular Ca(2+) channels may influence subsequent gating through the processes of Ca(2+)-activation or -inactivation. We study the effect of such "residual Ca(2+)" from previous channel opening on the stochastic gating of minimal and realistic single-channel models coupled to a restricted cytoplasmic compartment. Using Monte Carlo simulation as well as analytical and numerical solution of a system of advection-reaction equations for the probability density of the domain [Ca(2+)] conditioned on the state of the channel, we determine how the steady-state open probability (p(open)) of single-channel models of Ca(2+)-regulated Ca(2+) channels depends on the time constant for Ca(2+) domain formation and collapse. As expected, p(open) for a minimal model including Ca(2+) activation increases as the domain time constant becomes large compared to the open and closed dwell times of the channel, that is, on average the channel is activated by residual Ca(2+) from previous openings. Interestingly, p(open) for a channel model that is inactivated by Ca(2+) also increases as a function of the domain time constant when the maximum domain [Ca(2+)] is fixed, because slow formation of the Ca(2+) domain attenuates Ca(2+)-mediated inactivation. Conversely, when the source amplitude of the channel is fixed, increasing the domain time constant leads to elevated domain [Ca(2+)] and decreased open probability. Consistent with these observations, a realistic De Young-Keizer-like IP(3)R model responds to residual Ca(2+) with a steady-state open probability that is a monotonic function of the domain time constant, though minimal models that include both Ca(2+)-activation and -inactivation show more complex behavior. We show how the probability density approach described here can be generalized for arbitrarily complex channel models and for any value of the domain time constant. In addition, we present a comparatively simple numerical procedure for estimating p(open) for models of Ca(2+)-regulated Ca(2+) channels in the limit of a very fast or very slow Ca(2+) domain. When the ordinary differential equation for the [Ca(2+)] in a restricted cytoplasmic compartment is replaced by a partial differential equation for the buffered diffusion of intracellular Ca(2+) in a homogeneous isotropic cytosol, we find the dependence of p(open) on the buffer time constant is qualitatively similar to the above-mentioned results.  相似文献   

13.
Microfluorimetry and patch-clamp experiments were performed on TRPV6-expressing HEK cells to determine whether this Ca(2+)-sensing Ca(2+) channel is constitutively active. Intact cells loaded with fura-2 had an elevated intracellular free Ca(2+) concentration ([Ca(2+)](i)), which decreased to the same level such as in non-transfected cells if external Ca(2+) was chelated by EGTA. Whole cell recordings from non-transfected HEK cells and cells expressing human TRPV6 revealed the presence of a basal inward current in both types of cells when the internal solution contained 0.1 mm EGTA and 100 nm [Ca(2+)](i) or if the cytosolic Ca(2+) buffering remained undisturbed in perforated patch-clamp experiments. If recombinantly expressed TRPV6 forms open channels, one would expect Ca(2+)-induced current inhibition, because TRPV6 is negatively regulated by internal Ca(2+). However, dialyzing solutions with high [Ca(2+)] such as 1 microm into TRPV6-expressing cells did not block the basal inward current, which was not different from the recordings from non-transfected cells. In contrast, dialyzing 0.5 mm EGTA into TRPV6-expressing cells readily activated Ca(2+) inward currents, which were undetectable in non-transfected cells. Interestingly, monovalent cations permeated the TRPV6 channels under conditions where no Ca(2+) permeation was detectable, indicating that divalent cations block TRPV6 channels from the extracellular side. Like human TRPV6, the truncated human TRPV6(Delta695-725), which lacks the C-terminal domain required for Ca(2+)-calmodulin binding, does not form constitutive active channels, whereas the human TRPV6(D542A), carrying a point mutation in the presumed pore region, does not function as a channel. In summary, no constitutive open TRPV6 channels were detected in patch-clamp experiments from transfected HEK cells. However, channel activity is highly regulated by intracellular and extracellular divalent cations.  相似文献   

14.
Thecoupling mechanism between depletion of Ca2+ stores in theendoplasmic reticulum and plasma membrane store-operated ion channelsis fundamental to Ca2+ signaling in many cell types and hasyet to be completely elucidated. Using Ca2+release-activated Ca2+ (CRAC) channels in RBL-2H3 cells asa model system, we have shown that CRAC channels are maintained in theclosed state by an inhibitory factor rather than being opened by theinositol 1,4,5-trisphosphate receptor. This inhibitory role can befulfilled by the Drosophila protein INAD (inactivation-noafter potential D). The action of INAD requires Ca2+ andcan be reversed by a diffusible Ca2+ influx factor. Thusthe coupling between the depletion of Ca2+ stores and theactivation of CRAC channels may involve a mammalian homologue of INADand a low-molecular-weight, diffusible store-depletion signal.

  相似文献   

15.
We determined the effect of aromatic aminoacid stimulation of the human extracellular Ca2+-sensingreceptor (CaR) on intracellular Ca2+ concentration([Ca2+]i) in single HEK-293 cells. Additionof L-phenylalanine or L-tryptophan (at 5 mM)induced [Ca2+]i oscillations from a restingstate that was quiescent at 1.8 mM extracellular Ca2+concentration ([Ca2+]e). Each[Ca2+]i peak returned to baseline values, andthe average oscillation frequency was ~1 min1 at37°C. Oscillations were not induced or sustained if the[Ca2+]e was reduced to 0.5 mM, even in thecontinued presence of amino acid. Average oscillation frequency inresponse to an increase in [Ca2+]e (from 1.8 to 2.5-5 mM) was much higher (~4 min1) than thatinduced by aromatic amino acids. Oscillations in response to[Ca2+]e were sinusoidal whereas those inducedby amino acids were transient. Thus both amino acids andCa2+, acting through the same CaR, produce oscillatoryincreases in [Ca2+]i, but the resultantoscillation pattern and frequency allow the cell to discriminate whichagonist is bound to the receptor.

  相似文献   

16.
The plasma membrane Na+/Ca2+ exchanger (NCX) is almost certainly the major Ca2+ extrusion mechanism in cardiac myocytes. Binding of Na+ and Ca2+ ions to its large cytosolic loop regulates ion transport of the exchanger. We determined the solution structures of two Ca2+ binding domains (CBD1 and CBD2) that, together with an alpha-catenin-like domain (CLD), form the regulatory exchanger loop. CBD1 and CBD2 are very similar in the Ca2+ bound state and describe the Calx-beta motif. Strikingly, in the absence of Ca2+, the upper half of CBD1 unfolds while CBD2 maintains its structural integrity. Together with a 7-fold higher affinity for Ca2+, this suggests that CBD1 is the primary Ca2+ sensor. Specific point mutations in either domain largely allow the interchange of their functionality and uncover the mechanism underlying Ca2+ sensing in NCX.  相似文献   

17.
In cardiac mitochondria, matrix free Ca2+ ([Ca2+]m) is primarily regulated by Ca2+ uptake and release via the Ca2+ uniporter (CU) and Na+/Ca2+ exchanger (NCE) as well as by Ca2+ buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca2+ buffering affects these dynamics under various Ca2+ uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca2+ buffering on the uptake and release of Ca2+, we monitored Ca2+ dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca2+] ([Ca2+]e) and [Ca2+]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca2+]e and [Ca2+]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca2+-induced changes in mitochondrial bioenergetics. Our [Ca2+]e and [Ca2+]m measurements demonstrate that Ca2+ uptake and release do not show reciprocal Ca2+ dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca2+ buffering system in the matrix compartment. The Na+- induced Ca2+ release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca2+ uptake in the presence of large amounts of CaCl2, but not by Na+- induced Ca2+ release.  相似文献   

18.
Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) occurs in smooth muscle as spontaneous SR Ca(2+) release or Ca(2+) sparks and, in some spiking tissues, as Ca(2+) release that is triggered by the activation of sarcolemmal Ca(2+) channels. Both processes display spatial localization in that release occurs at a higher frequency at specific subcellular regions. We have used two-photon flash photolysis (TPFP) of caged Ca(2+) (DMNP-EDTA) in Fluo-4-loaded urinary bladder smooth muscle cells to determine the extent to which spatially localized increases in Ca(2+) activate SR release and to further understand the molecular and biophysical processes underlying CICR. TPFP resulted in localized Ca(2+) release in the form of Ca(2+) sparks and Ca(2+) waves that were distinguishable from increases in Ca(2+) associated with Ca(2+) uncaging, unequivocally demonstrating that Ca(2+) release occurs subsequent to a localized rise in [Ca(2+)](i). TPFP-triggered Ca(2+) release was not constrained to a few discharge regions but could be activated at all areas of the cell, with release usually occurring at or within several microns of the site of photolysis. As expected, the process of CICR was dominated by ryanodine receptor (RYR) activity, as ryanodine abolished individual Ca(2+) sparks and evoked release with different threshold and kinetics in FKBP12.6-null cells. However, TPFP CICR was not completely inhibited by ryanodine; Ca(2+) release with distinct kinetic features occurred with a higher TPFP threshold in the presence of ryanodine. This high threshold release was blocked by xestospongin C, and the pharmacological sensitivity and kinetics were consistent with CICR release at high local [Ca(2+)](i) through inositol trisphosphate (InsP(3)) receptors (InsP(3)Rs). We conclude that CICR activated by localized Ca(2+) release bears essential similarities to those observed by the activation of I(Ca) (i.e., major dependence on the type 2 RYR), that the release is not spatially constrained to a few specific subcellular regions, and that Ca(2+) release through InsP(3)R can occur at high local [Ca(2+)](i).  相似文献   

19.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

20.
Ca2+-induced Ca2+ release (CICR) plays an important role in the generation of cytosolic Ca2+ signals in many cell types. However, it is inherently difficult to distinguish experimentally between the contributions of messenger-induced Ca2+ release and CICR. We have directly tested the CICR sensitivity of different regions of intact pancreatic acinar cells using local uncaging of caged Ca2+. In the apical region, local uncaging of Ca2+ was able to trigger a CICR wave, which propagated toward the base. CICR could not be triggered in the basal region, despite the known presence of ryanodine receptors. The triggering of CICR from the apical region was inhibited by a pharmacological block of ryanodine or inositol trisphosphate receptors, indicating that global signals require coordinated Ca2+ release. Subthreshold agonist stimulation increased the probability of triggering CICR by apical uncaging, and uncaging-induced CICR could activate long-lasting Ca2+ oscillations. However, with subthreshold stimulation, CICR could still not be initiated in the basal region. CICR is the major process responsible for global Ca2+ transients, and intracellular variations in sensitivity to CICR predetermine the activation pattern of Ca2+ waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号