首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A polymerase chain reaction (PCR)-based test is described for the specific detection of Verticillium fungicola var. aleophilum (Vfa), the fungal pathogen causing dry bubble disease on the cultivated button mushroom, Agaricus bisporus. PCR primers were tailored to target a 162-bp arbitrary sequence in the Vfa genome. In PCR amplifications using the primer pair, all of 20 isolates of Vfa that had been collected during a 29-year period at commercial mushroom operations located primarily in North America were found to generate the diagnostic 162-bp DNA product. Conversely, the primers failed to produce the specific amplicon with DNA from isolates representing 5 other species of Verticillium, the pathogenic subspecies V. fungicola var. fungicola from Europe, and 12 other fungal species commonly inhabiting mushroom compost. A protocol was designed enabling a confirmed diagnosis of dry bubble disease in less than 3 h. The PCR-based test should find application for the rapid diagnosis and detection of the fungal pathogen in disease management programs and, potentially, in screening for on-the-farm sources of infection.  相似文献   

2.
Lecanicillium fungicola (formerly Verticillium fungicola) is responsible for dry bubble disease in the white button mushroom Agaricus bisporus. Selection for resistance to this pathogen raises an important challenge for mushroom breeders. We have investigated the inheritance of resistance to dry bubble under artificial inoculation in three independent experiments, using a progeny of 89 hybrids derived from an intervarietal A. bisporus var. bisporus×A. bisporus var. burnettii cross. Overall, phenotypic correlations were highly significant between the different experiments. Principal component analysis, together with analysis of variance results stated that the disease reactions were accurately assessed using the percentage of bubbles (PB) and the percentage of spotty cap mushrooms (PS) separately rather than with the combination of both. An original contribution of this study lies in the effective use of area under the disease-progress curve (AUDPC) to describe the dry bubble resistance. The continuous phenotypic distribution observed for the resistance traits suggested that tolerance to dry bubble was under polygenic control. Heritability estimates for either PB or AUDPC were high (0.67-0.86) while it was inconsistent for PS (0.33-0.68) suggesting a strong impact of the environment on this latter trait. Earliness and latent period were found highly correlated with disease incidence. The earliest strains appeared to be the most resistant ones. These results contribute to disentangle the complex fungal-fungal A. bisporus / L. fungicola interaction and to provide genetic basis as a prerequisite for mushroom breeding program.  相似文献   

3.
A quality model has been developed from parameters determining the interactions of physical, chemical, and biological factors during the preparation of mushroom compost for growing Agaricus bisporus. Our results show that a partial least square model based on the combination of pH, dry matter, ammonia, carbon, hydrogen, ash, Cu, Fe, and Na could explain nearly 90% of the variation in mushroom yield obtained from four compost comparative trials. The yields in the data base for generating the model ranged from 138 to 305 kg per ton of compost. The validity of the yield model has been confirmed in a trial carried out in collaboration with experienced commercial growers. This has significant implications for compost producers, as production efficiencies can be maintained by targeting the important parameters.  相似文献   

4.
Abstract: Twenty-one wild isolates from two distinct sites and six cultivated strains of Agaricus bisporus were cultivated on a conventional mushroom compost. Their degradative abilities were studied by measuring 12 extracellular enzyme activities produced during mycelial growth. Differences in production of enzyme activities and in compost colonisation were observed between the three groups of strains and within each group. They were used to define the mechanisms of resource allocation in mushroom compost. The ability to grow and produce sporophores on mushroom compost appeared to be linked with the production of a balanced pool of enzymes including moderate levels of polysaccharidases active on straw cell walls and of enzymes able to degrade microbial biomass and microbial products.  相似文献   

5.
We evaluated the influence of mitochondrial haplotype on growth of the common button mushroom Agaricus bisporus. Ten pairs of heterokaryon strains, each pair having the same nuclear genome but different mitochondrial genomes, were produced by controlled crosses among a group of homokaryons of both wild and commercial origins. Seven genetically distinct mitochondrial DNA (mtDNA) haplotypes were evaluated in different nuclear backgrounds. The growth of heterokaryon pairs differing only in their mtDNA haplotypes was compared by measuring mycelial radial growth rate on solid complete yeast medium (CYM) and compost extract medium and by measuring mycelial dry weight accumulation in liquid CYM. All A. bisporus strains were incubated at temperatures similar to those utilized in commercial production facilities (18, 22, and 26(deg)C). Statistically significant differences were detected in 8 of the 10 heterokaryon pairs evaluated for one or two of the three growth parameters measured. Some heterokaryon pairs showed differences in a single growth parameter at all three temperatures of incubation, suggesting a temperature-independent difference. Others showed differences at only a single temperature, suggesting a temperature-dependent difference. The influence of some mtDNA haplotypes on growth was dependent on the nuclear genetic background. Our results show that mtDNA haplotype can influence growth of A. bisporus heterokaryons in some nuclear backgrounds. These observations demonstrate the importance of including a number of mitochondrial genotypes and evaluating different nuclear-mitochondrial combinations of A. bisporus in strain improvement programs.  相似文献   

6.
Lecanicillium fungicola causes dry bubble disease in commercially cultivated mushroom. This review summarizes current knowledge on the biology of the pathogen and the interaction between the pathogen and its most important host, the white‐button mushroom, Agaricus bisporus. The ecology of the pathogen is discussed with emphasis on host range, dispersal and primary source of infection. In addition, current knowledge on mushroom defence mechanisms is reviewed. Taxonomy: Lecanicillium fungicola (Preuss) Zare and Gams: Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreales; Order Hypocreomycetidae; Family Cordycipitaceae; genus Lecanicillium. Host range: Agaricus bisporus, Agaricus bitorquis and Pleurotus ostreatus. Although its pathogenicity for other species has not been established, it has been isolated from numerous other basidiomycetes. Disease symptoms: Disease symptoms vary from small necrotic lesions on the caps of the fruiting bodies to partially deformed fruiting bodies, called stipe blow‐out, or totally deformed and undifferentiated masses of mushroom tissue, called dry bubble. The disease symptoms and severity depend on the time point of infection. Small necrotic lesions result from late infections on the fruiting bodies, whereas stipe blow‐out and dry bubble are the result of interactions between the pathogen and the host in the casing layer. Economic importance: Lecanicillium fungicola is a devastating pathogen in the mushroom industry and causes significant losses in the commercial production of its main host, Agaricus bisporus. Annual costs for mushroom growers are estimated at 2–4% of total revenue. Reports on the disease originate mainly from North America and Europe. Although China is the main producer of white‐button mushrooms in the world, little is known in the international literature about the impact of dry bubble disease in this region. Control: The control of L. fungicola relies on strict hygiene and the use of fungicides. Few chemicals can be used for the control of dry bubble because the host is also sensitive to fungicides. Notably, the development of resistance of L. fungicola has been reported against the fungicides that are used to control dry bubble disease. In addition, some of these fungicides may be banned in the near future. Useful websites: http://www.mycobank.org ; http://www.isms.biz ; http://www.cbs.knaw.nl  相似文献   

7.
In this study, the possibility of using tea production waste as a new casing material in mushroom (Agaricus bisporus) cultivation was investigated. Some physical and chemical characteristics of tea waste, fermented tea waste and a mixture of tea waste with peat were compared with that of peat casing, as were their effects on yield. The highest yield was obtained from peat casing. Using tea production waste alone as a casing was not acceptable for assured yield when it was compared with peat. But, a mixture of tea production waste with peat in 1:1 (v:v) ratio increased the yield. There was no significant difference between the mushroom yields of tea production waste+peat and peat casing materials at the end of 30 and 40 days. High salt content, organic and inorganic compounds in casing materials caused reduction of yields. However, a high iron content in casing material gave a significant positive correlation with total yield at 40 days.  相似文献   

8.
Two crops of Agaricus bisporus (J. Lange) Imbach were grown on mixtures of non-composted substrate (NCS)/spent mushroom compost (SMC) or pasteurized Phase II compost (control). NCS consisted of oak sawdust (28% oven dry wt), millet (29%), rye (8%), peat (8%), ground alfalfa (4%), ground soybean (4%), wheat bran (9%), and CaCO3 (10%). Substrates included 25/75 NCS/SMC, 50/50 NCS/SMC, and 75/25 NCS/SMC, NCS and Phase II compost. Spawn types and strains were evaluated for their effects on yield, biological efficiency (BE), size and mushroom solids content. Spawn types included millet, casing inoculum (CI), 50/50 CI/millet, or NCS while mushroom strains were of the brown or hybrid off-white variety (U1 type). Mushroom yields and BEs on substrate mixtures of NCS and SMC were comparable to non-supplemented Phase II compost. The highest yield (12.8 kg/m2) and BE (70.9%) were produced on a substrate mixture of 50/50 NCS/SMC and spawn type NCS. Mushroom solids content (7.1%) was highest from the brown strain produced on a 50/50 mixture of NCS/SMC.  相似文献   

9.
Investigations into the dynamic nature of composting environments are necessary to understand and ultimately optimise the complex processes that occur. In this study, various parameters were measured to investigate physical, chemical and biological changes that occur in compost during the production of Agaricus bisporus. In addition to monitoring the compost samples during mushroom cultivation, uninoculated samples were maintained for comparative purposes. Principal components analysis of the variables measured showed a clear distinction between the thermophilic Phase I composts, uninoculated Phase II composts and mushroom inoculated composts. Leucine assimilation, a novel technique to composting environments, is presented as suitable method for assessing microbial activity in such systems. Strict agreement between leucine assimilation and fluorescein diacetate (FDA) hydrolysis, a rarely used technique in composting environments, was not observed, suggesting that neither should be used as a sole measure of microbial activity in compost. Association of FDA hydrolysis with the culturable heterotrophic count suggests that FDA hydrolysis may indicate bacterial as opposed to total microbial activity.  相似文献   

10.
Vermicompost, the digestion product of organic material by earthworms, has been widely reported to have a more positive effect on plant growth and plant health than conventional compost. A study was conducted to investigate the effects of different vermicompost elutriates (aerated compost teas) on soils and plant growth. The teas were analyzed by chemical, microbiological, and molecular methods accompanied by plant growth tests at laboratory and field scale. The number of microorganisms in the teas increased during the extraction process and was affected by substrate addition. The vermicompost tea found to increase plant growth best under laboratory tests was applied to cereals (wheat and barley) and vegetables (Raphanus sativus, Rucola selvatica, and Pisum sativum) in a field study. The results revealed no effects of tea application on plant yield; however, sensoric tests indicated an improvement in crop quality. The soils from laboratory and field studies were investigated to detect possible microbial or chemical changes. The results indicated that minor changes to the soil microbial community occurred following tea application by foliar spray in both the laboratory-scale and field-scale experiments.  相似文献   

11.
The growth-promoting effect of the thermophilic fungus Scytalidium thermophilum in mushroom compost on the mycelium of the edible mushroom Agaricus bisporus was investigated. Results obtained by others were confirmed by showing that S. thermophilum leads to an increased hyphal extension rate of the mushroom mycelium. However, it was demonstrated that hyphal extension rates were not clearly related to mushroom biomass increase rates. A number of experiments pointed strongly towards CO2 as the determinant of hyphal extension rates. In compost, CO2 is produced mainly by thermophilic fungi. Several experiments did not reveal any other specific compound produced by S. thermophilum that increases the hyphal extension rate of the mushroom mycelium.  相似文献   

12.
The growth-promoting effect of the thermophilic fungus Scytalidium thermophilum in mushroom compost on the mycelium of the edible mushroom Agaricus bisporus was investigated. Results obtained by others were confirmed by showing that S. thermophilum leads to an increased hyphal extension rate of the mushroom mycelium. However, it was demonstrated that hyphal extension rates were not clearly related to mushroom biomass increase rates. A number of experiments pointed strongly towards CO2 as the determinant of hyphal extension rates. In compost, CO2 is produced mainly by thermophilic fungi. Several experiments did not reveal any other specific compound produced by S. thermophilum that increases the hyphal extension rate of the mushroom mycelium.  相似文献   

13.
We examined the mycoparasitic and saprotrophic behavior of isolates representing groups of Trichoderma harzianum to establish a mechanism for the aggressiveness towards Agaricus bisporus in infested commercial compost. Mycoparasitic structures were infrequently observed in interaction zones on various media, including compost, with cryoscanning electron microscopy. T. harzianum grows prolifically in compost in the absence or presence of A. bisporus, and the aggressive European (Th2) and North American (Th4) isolates produced significantly higher biomasses (6.8- and 7.5-fold, respectively) in compost than did nonaggressive, group 1 isolates. All groups secreted depolymerases that could attack the cell walls of A. bisporus and of wheat straw, and some were linked to aggressiveness. Growth on mushroom cell walls in vitro resulted in rapid production of chymoelastase and trypsin-like proteases by only the Th2 and Th4 isolates. These isolates also produced a dominant protease isoform (pI 6.22) and additional chitinase isoforms. On wheat straw, Th4 produced distinct isoforms of cellulase and laminarinase, but there was no consistent association between levels or isoforms of depolymerases and aggressiveness. Th3's distinctive profiles confirmed its reclassification as Trichoderma atroviride. Proteases and glycanases were detected for the first time in sterilized compost colonized by T. harzianum. Xylanase dominated, and some isoforms were unique to compost, as were some laminarinases. We hypothesize that aggressiveness results from competition, antagonism, or parasitism but only as a component of, or following, extensive saprotrophic growth involving degradation of wheat straw cell walls.  相似文献   

14.
Two substrates, a non-composted grain spawn substrate and a traditional composted substrate, each covered with peat-based casing that contained varying amounts of activated carbon (AC) and each receiving different heat-treatment durations, were tested for Agaricus bisporus mushroom production. The amounts of AC were 0, 5, 10, 15, and 20% v/v, and the heat treatments were 0, 60, and 180 min at 121 °C and 103.4 kPa. Overall, the addition of AC up to 10–15% of casing for a grain spawn substrate increased mushroom yield. However, the addition of AC to the casing for compost substrates had no significant effect on yield, whereas heat-treating the casing increased yield. The onset of fruiting was retarded in grain spawn treatments not receiving AC with heat-treatment durations of 60 and 180 min, whereas this effect was not as apparent for the compost substrates. On average, mushroom yield was greater for the grain spawn substrate (366 g) than for compost substrate (287 g). For grain spawn substrate, the results show that the addition of AC ranging from 5% to 10% was adequate for maximum mushroom production.  相似文献   

15.
The organic produce industry is gaining popularity with consumers because of the perception for healthier foods and the environmental benefits of this agricultural practice. Common amendments in organic agriculture include compost and compost tea, the latter being a relatively new product in North America. The main objective of this study was to assess the effectiveness of ruminant and municipal solid waste compost and compost teas made from these composts on selected soil, leaf and fruit parameters of raspberries. Generally, foliar compost tea application was as effective as compost addition in raspberry production. Concentrations of K in leaf and fruits were significantly lower (p?=?0.05) in compost tea treated raspberries. Furthermore, the compost tea increased leaf Na compared to compost amendments which suggested that raspberries preferentially take up Na via foliar applications compared to root Na applications. The yield, total antioxidant capacity of fruit, and vitamin C content of fruit were not affected by treatment but differed greatly among years. Precipitation also varied greatly among years as did soil nutrient concentrations and may have influenced yield, total antioxidant capacity, and vitamin C content.  相似文献   

16.
Ammonia suppressants are applied to chicken litter to decrease ammonia levels. And mushroom (Agaricus bisporus) producers use poultry litter to increase the nitrogen in the compost. To determine the influence of ammonia suppressants used in poultry litter on compost preparation and mushroom production, four mushroom crops were cultivated from compost prepared using litter treated with PLT, Barn Fresh and Impact-P at 25.22 kg/100 m2, 40 kg/100 m2, and 0.49 kg/100 m2, respectively, during the poultry production process. In general, no significant differences (P>0.05) were noted between treatments for total nitrogen, ammonia, pH, EC, ash, and moisture when compost or the headspace air was sampled during compost preparation throughout all stages. Nor were mushroom yields or counts significantly affected (P>0.05) by the presence of ammonia suppressants in the poultry litter. Thus, the mushroom industry can confidently use poultry litter amended with PLT, Impact-P, and Barn Fresh when used at the recommended rates.  相似文献   

17.
The production and regulation of extracellular bacteriolytic enzymes of Agaricus bisporus are being studied to understand better the nutrition of this fungus and to identify factors that regulate the selectivity of mushroom compost as a growth medium. Both muramidase (EC.3.2.1.17) and N -acetyl-β- D -glucosaminidase (β-GlcNAcase, EC.3.2.1.30) have been detected in liquid cultures of A. bisporus , and in cultures fruiting in sterile and non-sterile compost. A turbidometric assay, based on the decrease in optical density of suspended Bacillus subtilis bacterial cell walls, was used to measure muramidase production by A. bisporus . A colorimetric assay was used to measure β-GlcNAcase. Both bacteriolytic enzyme activities were produced on a range of sole carbon sources, including killed freeze-dried B. subtilis cells. Muramidase activity was highest in axenic compost cultures. Bacteriolytic enzyme activity peaked as the first group of fruit bodies was harvested in both sterile and non-sterile compost.  相似文献   

18.
Spent mushroom substrate (SMS) leached with water or treated with chelating agents to remove metal cations, pasteurised to remove any harmful micro-organisms and mixed with peat has potential as a casing material for mushroom production. The microbial and chemical changes in SMS after treatment with citric acid, ethylene diaminetetraacetic acid (EDTA) and water were compared; treatment with the chelating agents resulted in lower ash content, conductivity and minerals, higher fibre fractions, carbon, hydrogen and nitrogen. The microbial and chemical changes in the materials after treatment with the two chelators and water were compared. Blending peat with the heat-treated materials at a ratio of 1:1 resulted in improved physical properties. The casings prepared from the test materials and the control, consisting of 100% peat, were compared after neutralising with lime for their productivity in a mushroom yield trial. As expected, the compost bags cased with the control were the most productive compared to the other casings. Of the three treated materials, casing prepared from SMS treated with EDTA blended with peat was the most productive. Dry matter of harvested mushrooms from chelated-SMS casings was significantly higher than the control casing. Comparison of the main components of peat and chelated SMS revealed that the major differences were in the proportions of ash, lipid, lignin and fibre fractions. The stability of some of these components, when complexed with metal cations present in lime may play an important role in determining the composition of the cell wall in fruiting bodies leading to high dry matter content. Received: 19 November 1998 / Received revision: 29 March 1999 / Accepted: 6 April 1999  相似文献   

19.
郭孟配  肖扬  边银丙 《微生物学通报》2021,48(10):3799-3809
病害是影响食用菌产量和品质的重要因素之一,目前尚缺少对食用菌病害研究现状与发展方向的直观了解。从2010年以来国内外发表的食用菌病害论文入手,对论文数量、发文期刊、被引率和研究机构进行了分析,展示了国内外食用菌病害的研究概况。此外,对相关论文进行了关键词共现分析,明确了国内外食用菌病害研究的热点。分析显示,绿霉病、褐斑病、蛛网病、病毒感染、湿泡病和软腐病是目前国内外最受关注的6类食用菌病害,干泡病的关注度日趋减少,而蛛网病侵染的食用菌种类持续增加。结合历史发文动态研究了食用菌病害的发生趋势,并认为环境有害微生物检测、消毒剂筛选和食用菌土传真菌病害防控将是未来食用菌病害的重点研究领域。  相似文献   

20.
《Fungal biology》2014,118(9-10):785-791
A cellular proteomic analysis was performed on Trichoderma aggressivum f. europaeum. Thirty-four individual protein spots were excised from 2-D electropherograms and analysed by ESI-Trap Liquid Chromatography Mass Spectrometry (LC/MS). Searches of the NCBInr and SwissProt protein databases identified functions for 31 of these proteins based on sequence homology. A differential expression study was performed on the intracellular fraction of T. aggressivum f. europaeum grown in media containing Agaricus bisporus tissue and Phase 3 mushroom compost compared to a control medium. Differential expression was observed for seven proteins, three of which were upregulated in both treatments, two were down regulated in both treatments and two showed qualitatively different regulation under the two treatments. No proteins directly relating to fungal cell wall degradation or other mycoparasitic activity were observed. Functions of differentially produced intracellular proteins included oxidative stress tolerance, cytoskeletal structure, and cell longevity. Differential production of these proteins may contribute to the growth of T. aggressivum in mushroom compost and its virulence toward A. bisporus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号