首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Self-assembled mannan nanogels are designed to provide a therapeutic or vaccine delivery platform based on the bioactive properties of mannan to target mannose receptor expressed on the surface of antigen-presenting cells, combined with the performance of nanogels as carriers of biologically active agents.

Methods

Proteins in the corona around mannan nanogel formed in human plasma were identified by mass spectrometry after size exclusion chromatography or centrifugation followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Structural changes and time dependent binding of human apolipoprotein A-I (apoA-I) and human serum albumin (HSA) to mannan nanogel were studied using intrinsic tryptophan fluorescence and circular dichroism spectroscopy. The mannan nanogel effect on blood coagulation and fibrillation of Alzheimer's disease-associated amyloid β peptide and hemodialysis-associated amyloidosis β2 microglobulin was evaluated using thrombin generation assay or thioflavin T fluorescence assay, respectively.

Results

The protein corona around mannan nanogel is formed through a slow process, is quite specific comprising apolipoproteins B-100, A-I and E and HSA, evolves over time, and the equilibrium is reached after hours to days. Structural changes and time dependent binding of apoA-I and HSA to mannan nanogel are minor. The mannan nanogel does not affect blood coagulation and retards the fibril formation.

Conclusions

Mannan nanogel has a high biosafety and biocompatibility, which is mandatory for nanomaterials to be used in biomedical applications.

General Significance

Our research provides a molecular approach to evaluate the safety aspects of nanomaterials, which is of general concern in society and science.  相似文献   

2.
An effective intracellular protein delivery system with self-assembled cationic nanogels is reported. Interaction of proteins with self-assembled nanogels of cationic cholesteryl group-bearing pullulans (CHPNH 2) was investigated by dynamic light scattering (DLS), transmission electron micrograph (TEM), fluorescence resonance energy transfer (FRET), and fluorescence correlation spectroscopy (FCS). The cationic nanogels strongly interacted with bovine serum albumin (BSA) and formed monodispersed nanoparticels (<50 nm). The complex more effectively internalized into HeLa cells than cationic liposomes and a protein transduction domain (PTD) based carrier even in the presence of serum. The higher efficiency of the nanogel carrier is probably due to the formation of colloidally stable nanoparticles with the protein. The enzymatic activity of beta-galactosidase (beta-Gal) was retained after internalization into cells. The nanogel carrier promoted nuclear delivery of a GFP-conjugated nuclear localization signal and Tat as a PTD (Tat-NLS-GFP). A blocking experiment with chemical inhibitors revealed the possible involvement of macropinocytosis in the uptake of the nanogel complex. After cellular uptake, the complex of the nanogel-protein was dissociated and the protein was released inside the cell. Such a self-assembled cationic nanogel system should create opportunities for novel applications of protein delivery.  相似文献   

3.
4.
Nanogels for oligonucleotide delivery to the brain   总被引:11,自引:0,他引:11  
Systemic delivery of oligonucleotides (ODN) to the central nervous system is needed for development of therapeutic and diagnostic modalities for treatment of neurodegenerative disorders. Macromolecules injected in blood are poorly transported across the blood-brain barrier (BBB) and rapidly cleared from circulation. In this work we propose a novel system for ODN delivery to the brain based on nanoscale network of cross-linked poly(ethylene glycol) and polyethylenimine ("nanogel"). The methods of synthesis of nanogel and its modification with specific targeting molecules are described. Nanogels can bind and encapsulate spontaneously negatively charged ODN, resulting in formation of stable aqueous dispersion of polyelectrolyte complex with particle sizes less than 100 nm. Using polarized monolayers of bovine brain microvessel endothelial cells as an in vitro model this study demonstrates that ODN incorporated in nanogel formulations can be effectively transported across the BBB. The transport efficacy is further increased when the surface of the nanogel is modified with transferrin or insulin. Importantly the ODN is transported across the brain microvessel cells through the transcellular pathway; after transport, ODN remains mostly incorporated in the nanogel and ODN displays little degradation compared to the free ODN. Using mouse model for biodistribution studies in vivo, this work demonstrated that as a result of incorporation into nanogel 1 h after intravenous injection the accumulation of a phosphorothioate ODN in the brain increases by over 15 fold while in liver and spleen decreases by 2-fold compared to the free ODN. Overall, this study suggests that nanogel is a promising system for delivery of ODN to the brain.  相似文献   

5.
The relatively low success rate of cancer nanomedicines has raised debate on the roles of the enhanced permeability and retention (EPR) effect in enhancing drug delivery to tumors and improving therapeutic efficacy. In this review, we highlight new strategies beyond the EPR effect for enhancing nanoparticle delivery to tumors. We discuss the roles of transcellular extravasation, receptor-mediated pathways, and protein corona interactions on nanoparticle deposition in tumors. We summarize recent progress in platinum-based combination nanomedicines containing multiple chemotherapeutics with synergistic anticancer mechanisms and multiple anticancer therapies with novel mechanisms to enhance drug delivery and antitumor activities. We also highlight future opportunities in platinum-based combination nanomedicines and key hurdles for the translation of these combination nanomedicines into the clinic.  相似文献   

6.
A hyaluronic acid-based anionic nanogel formed by self-assembly of cholesteryl-group-bearing HA is designed for protein delivery. The HA nanogel spontaneously binds various types of proteins without denaturation, such as recombinant human growth hormone, erythropoietin, exendin-4, and lysozyme. The HA nanogel shows unique colloidal properties, in particular that an injectable hydrogel is formed by salt-induced association of the HA nanogel. A pharmacokinetic study in rats shows that an in situ gel formulation, prepared by simply mixing rhGH and HA nanogel in phosphate buffer, maintains plasma rhGH levels within a narrow range over one week. Therefore, HA nanogels offer a simple method for easy formulation of therapeutic proteins and are effective for sustained protein release systems.  相似文献   

7.
A growing number of nanoparticle systems, termed “nanomedicines”, are being developed for diagnostic and therapeutic applications. Nanoparticles can employ various cellular entry pathways and trafficking mechanisms to effectively deliver drugs, biomolecules, and imaging agents to precise sub-cellular locations. However, the dynamic transport of nanoparticles through the complex intracellular environment is not well understood, having been primarily studied with static or bulk averaged methods in the past. Such techniques do not provide detailed information regarding the transport mechanism and rates of individual nanoparticles, where understanding of the interaction of nanoparticles with the cellular environment remains incomplete. Recent advances in live-cell fluorescence microscopy and real-time multiple particle tracking (MPT) have facilitated an improved understanding of cell trafficking pathways. Understanding the dynamic transport of nanoparticles as they are delivered into complex cellular components may lead to rational improvements in the design of nanomedicines. This review discusses different cellular uptake and trafficking pathways of nanomedicines, briefly highlights current fluorescence microscopy tools, and provides examples from the recent literature on the use of MPT and its applications.  相似文献   

8.
BackgroundIn past few decades, the research on engineered nanocarriers (NCs) has gained significant attention in cancer therapy due to selective delivery of drug molecules on the diseased cells thereby preventing unwanted uptake into healthy cells to cause toxicity.Scope of reviewThe applicability of enhanced permeability and retention (EPR) effect for the delivery of nanomedicines in cancer therapy has gained limited success due to poor accessibility of the drugs to the target cells where non-specific payload delivery to the off target region lack substantial reward over the conventional therapeutic systems.Major conclusionsIn spite of the fact, nanomedicines fabricated from the biocompatible nanocarriers have reduced targeting potential for meaningful clinical benefits. However, over expression of receptors on the tumor cells provides opportunity to design functional nanomedicine to bind substantially and deliver therapeutics to the cells or tissues of interest by alleviating the bio-toxicity and unwanted effects. This critique will give insight into the over expressed receptor in various tumor and targeting potential of functional nanomedicine as new therapeutic avenues for effective treatment.General significanceThis review shortly shed light on EPR-based drug targeting using nanomedicinal strategies, their limitation, and advances in therapeutic targeting to the tumor cells.  相似文献   

9.
Interleukin-10 (IL-10) is an anti-inflammatory cytokine, which active form is a non-covalent homodimer. Given the potential of IL-10 for application in various medical conditions, it is essential to develop systems for its effective delivery. In previous work, it has been shown that a dextrin nanogel effectively incorporated and stabilized rIL-10, enabling its release over time. In this work, the delivery system based on dextrin nanogels was further analyzed. The biocompatibility of the nanogel was comprehensively analyzed, through cytotoxicity (lactate dehydrogenase (LDH) release, MTS, Live, and Dead) and genotoxicity (comet) assays. The release profile of rIL-10 and its biological activity were evaluated in vivo, using C57BL/6 mice. Although able to maintain a stable concentration of IL-10 for at least 4 h in mice serum, the amount of protein released was rather low. Despite this, the amount of rIL-10 released from the complex was biologically active inhibiting TNF-α production, in vivo, by LPS-challenged mice. In spite of the significant stabilization achieved using the nanogel, rIL-10 still denatures rather quickly. An additional effort is thus necessary to develop an effective delivery system for this cytokine, able to release active protein over longer periods of time. Nevertheless, the good biocompatibility, the protein stabilization effect and the ability to perform as a carrier with controlled release suggest that self-assembled dextrin nanogels may be useful protein delivery systems.  相似文献   

10.
A water soluble β-1,3-glucan schizophyllan (SPG) can be recognized by an immunocyte receptor called dectin-1. When we introduced naphthalene into the side chain of SPG (nSPG), it formed nanogel by physical cross-link and gained capability to ingest hydrophobic compounds such as doxorubicin. Our in vitro assay revealed that this nanogel can be used as specific delivery of anti-cancer drugs to immunocytes.  相似文献   

11.
Up to now the lipid bilayers were rarely considered as targets in cancer therapy despite pronounced differences in lipid composition between plasma membranes of benign and malignant cells. In this study we demonstrate that the lipid bilayer of the plasma membrane is druggable and suitable for facilitating selective delivery of amphiphilic gemcitabine-squalene nanomedicines to cancer cells. Data from radioactive assays, fluorescent membrane probes and molecular dynamics simulations provide evidence of selective accumulation of gemcitabine-squalene in the plasma membranes with disrupted lipid asymmetry and its subsequent preferential uptake by malignant cells. This causes pronounced cytotoxicity on cancer cells in comparison to their benign counterparts originating from the same tissue.  相似文献   

12.
Cell-penetrating peptides (CPPs) have shown great potency for cargo delivery both in vitro and in vivo. Different biologically relevant molecules need to be delivered into appropriate cellular compartments in order to be active, for instance certain drugs/molecules, e.g. antisense oligonucleotides, peptides, and cytotoxic agents require delivery into the cytoplasm. Assessing uptake mechanisms of CPPs can help to develop novel and more potent cellular delivery vectors, especially in cases when reaching a specific intracellular target requires involvement of a specific internalization pathway. Here we measure the overall uptake kinetics, with emphasis on cytoplasmic delivery, of three cell-penetrating peptides M918, TP10 and pVec using a quenched fluorescence assay. We show that both the uptake levels and kinetic constants depend on the endocytosis inhibitors used in the experiments. In addition, in some cases only the internalization rate is affected by the endocytosis inhibitors while the total uptake level is not and vice versa, which emphasizes importance of kinetic studies when assessing the uptake mechanisms of CPPs. Also, there seems to be a correlation between lower total cellular uptake and higher first-order rate constants. Furthermore, this may indicate simultaneous involvement of different endocytic pathways with different efficacies in the internalization process, as hypothesized but not shown earlier in an uptake kinetics assay.  相似文献   

13.
A temperature-responsive lipase nanogel (denoted as CRL-IPN nanogel), in which lipase is encapsulated into an interpenetrating polymer matrix formed by polyacrylamide and poly(N-isopropylacrylamide) (PNIPAAm) has been designed and synthesized for an enhanced stability and activity in both aqueous and non-polar organic solvents. A three-step method, including acryloylation, polymerization with acrylamide and sequential polymerization with N-isopropylacrylamide, was established to fabricate enzyme nanogel with temperature-sensitive interpenetrating polymer network. It has been shown by an all-atom molecular dynamics simulation that above mentioned polymer matrix forms a more hydrophobic environment, as compared to that obtained with sole polyacrylamide, because of the penetration of N-isopropylacrylamide into the polymer acrylamide network via hydrogen bonding, which is further confirmed by the fluorescence spectrum. This favours the uptake of hydrophobic substrates and thus the overall rate of enzymatic catalysis. The enhanced stability and catalytic performance of this novel lipase nanogel in aqueous and non-polar organic solvent were demonstrated by using hydrolysis reaction of p-NPP in aqueous and esterification reaction of ibuprofen in isooctane. In aqueous solution, the residual activity of CRL-IPN nanogel maintains its 70% activity at 60 °C after 4 h, compared with that free lipase only has 30% at the same condition. In addition, the CRL-IPN nanogel can be reused for 10 cycles with no loss of its activity. In isooctane, CRL-IPN nanogel gave a 33% yield of esterification of ibuprofen, in comparison to 22% using free lipase and less than 5% using lipase encapsulated in a polyacrylamide matrix. The enhanced stability and activity make this CRL-IPN nanogel promising for enzymatic catalysis in non-polar solvents.  相似文献   

14.
Summary A current hypothesis is that functional glucocerebrosidase needs to be delivered to the lysosomes of tissue macrophages to guarantee successful enzyme therapy for Gaucher's disease. In this study, biochemical and immunohistochemical techniques were applied to identify in mice the localization of intravenously administered alglucerase (human modified placental glucocerebrosidase). Only in liver and spleen was a significant increase of glucocerebrosidase activity observed, with a maximum level at 15 minutes after enzyme infusion. The uptake of enzyme by liver was sufficiently high to allow more detailed studies on the (sub)cellular distribution of human alglucerase. The enzyme in liver is localized both in the endosomallysosomal system of the Kupffer cells and the endothelial cells lining the lumen of the sinusoids. Uptake by both of these types of cell is prevented by mannan. The results suggest that the cellular mechanisms responsible for improvement of Gaucher patients receiving alglucerase treatment is probably more complicated than previously recognized.  相似文献   

15.
1. The uptake of ovalbumin (OVA) in rat liver parenchymal cells (PC) and non-parenchymal cells was studied in vivo and in vitro in order to compare the cellular expression of glycoprotein receptors and the kinetics of intracellular transport of ligand endocytosed by these receptors. 2. Ovalbumin was labelled with 125I or with 125I-tyramine-cellobiose (125I-TC). By using 125I-TC-OVA the labelled degradation products were trapped in the cells. 3. 125I-TC-OVA was rapidly cleared from blood mainly by receptor-mediated uptake in the liver. At 30 min after injection, 50% of the ligand was recovered in the liver. The endothelial cells (EC) and the PC were the predominant cell types responsible for uptake. 4. The uptake in PC was strongly inhibited by asialo-orosomucoid (AOM), but not by mannan, indicating that the uptake in these cells was mediated by the galactose receptor and not by the mannose receptor. This finding is compatible with the observation that a proportion of the OVA contains terminal galactose residues in the carbohydrate moiety. 5. In vitro uptake of OVA in cultured EC was saturable and inhibited by mannan, mannose, fructose, N-acetylglucosamine, EDTA or monensin, but not by galactose or AOM. The uptake of OVA in these cells was therefore mediated by the mannose receptor. 6. To label the organelles involved in endocytosis in PC and EC, 125I-TC-OVA was injected intravenously together with an excess of either AOM or mannan. In this way the labelled ligand could be directed selectively to EC or PC respectively. Subcellular fractionation of total liver in sucrose and Nycodenz gradients revealed that in EC the intracellular transport of OVA is so fast that endocytosed ligand accumulates and thus increases the density of the lysosomes. Conversely, in PC transfer of ligand is slower, with the result that accumulation of undegraded ligand in the lysosomes does not occur. These findings are interpreted to mean that in EC the rate-limiting step of handling of endocytosed ligand is intralysosomal degradation, whereas in PC the rate-limiting step is transport of ligand to the lysosomes. 7. Altogether, these findings suggest that endocytosis of OVA by the liver EC and PC is mediated by mannose and galactose receptors respectively, and that the kinetics of intracellular transport of OVA differ in the two cell types.  相似文献   

16.
Saccharomyces cerevisiae mannan inhibits the pinocytosis of horseradish peroxidase (HRP) by resident, thioglycollate-,proteose peptone-, and Corynebacterium parvum-elicited macrophages from 30 to 70% when 1 mg/ml HRP is used, and 65 to 87% when 250 micrograms/ml HRP is used. In contrast, HRP uptake by J774 cells, a macrophage cell line reported to have little mannose receptor activity, is inhibited only about 25% by mannan. HRP uptake by resident and thioglycollate-elicited (thio) macrophages is also inhibited 34 and 66% by addition of EGTA to the medium and 55 and 79% by trypsin treatment of the macrophages, respectively. The inhibitory effect of EGTA can be reversed by 1 mM excess Ca2+. High extracellular concentrations of Ca2+, in the range of 10-20 mM, however, inhibit pinocytosis in resident macrophages by about 50%. Sucrose uptake by resident macrophages is not appreciably affected by mannan. These results support the hypothesis that HRP uptake is mediated by the macrophage mannose/N-acetylglucosamine receptor. PMA stimulates fluid-phase pinocytosis of HRP by thio macrophages but does not affect receptor-mediated uptake of HRP, while the combination of adenosine, homocysteine, and erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) selectively inhibits bulk-phase uptake by thio macrophages.  相似文献   

17.
Horse radish peroxidase (HRP), a mannose-containing glycoprotein was covalently modified by conjugation with dextran. The rapid uptake of HRP by the liver is markedly inhibited by mannan. The uptake of dextran-HRP conjugate by the liver, though lower compared to that of the free enzyme, is also partially inhibited by mannan. Liposomes were therefore used as carriers for delivering the free and the modified HRP to the liver. The dextran-HRP conjugate showed greater stability intracellularly as compared to the free enzyme. The enhanced stability of enzymes upon their extensive glycosylation with nondegradable sugar polymers would be of importance in extending the catalytic life of therapeutically active enzymes and thereby improve their therapeutic potential for the treatment of certain enzyme deficiency disorders.  相似文献   

18.
The development of non-viral gene delivery systems, with the capacity to overcome most of the biological barriers facing gene delivery, is challenging. We have developed peptide-based, multicomponent, non-viral delivery systems, incorporating: a bombesin peptide ligand (BBN(6–14)), to selectively target the gastrin releasing peptide receptor (GRPR); oligoarginine peptides (hexa- (R6) and nona-arginine (R9)), for plasmid DNA (pDNA) condensation; and GALA, to facilitate endosome escape. The uptake and endosome escape efficiency of bombesin/oligoarginine and bombesin/oligoarginine/GALA fusion peptides for oligonucleotide delivery was evaluated in terms of their complex size, cellular uptake, endosome escape, and cellular toxicity. Complex size and cell uptake studies demonstrated that the nona-arginine/bombesin delivery system was more efficient at condensing and delivering pDNA into PC-3 prostate cancer cells compared to the hexa-arginine/bombesin delivery system. Further, competition with free bombesin peptide, and comparative uptake studies in Caco-2 cells, which express GRPR at a lower level, suggested that GRPR contributes to the targeted uptake of this system. The addition of GALA into the nona-arginine/bombesin-based system further increased the pDNA cellular uptake at all tested N/P ratios; facilitated endosomal pDNA release; and had limited effects on cell viability. In conclusion, the delivery system combining BBN(6–14) with nona-arginine and GALA had optimal characteristics for the delivery of pDNA into the GRPR overexpressing cell line PC-3.  相似文献   

19.
The conjugation of polysaccharides to peptides is essential for antigen delivery and vaccine development. Herein, we show that tricine SDS-PAGE in combination with Coomassie Blue staining was adequate to determine the conjugation efficacy of a peptide (epitope 35–55 of myelin oligodendrocyte glycoprotein) to mannan. In addition, tricine SDS-PAGE and periodic acid–Schiff stains were able to monitor the redox state of mannan. Using the described protocol, more than 99.9% of a peptide containing five lysines at its N-terminus was confirmed conjugated to mannan.  相似文献   

20.
Traditionally, transferrin has been considered the primary mechanism for cellular iron delivery, despite suggestive evidence for additional iron delivery mechanisms. In this study we examined ferritin, considered an iron storage protein, as a possible delivery protein. Ferritin consists of H- and L-subunits, and we demonstrated iron uptake by ferritin into multiple organs and that the uptake of iron is greater when the iron is delivered via H-ferritin compared with L-ferritin. The delivery of iron via H-ferritin but not L-ferritin was significantly decreased in mice with compromised iron storage compared with control, indicating that a feedback mechanism exists for H-ferritin iron delivery. To further evaluate the mechanism of ferritin iron delivery into the brain, we used a cell culture model of the blood-brain barrier to demonstrate that ferritin is transported across endothelial cells. There are receptors that prefer H-ferritin on the endothelial cells in culture and on rat brain microvasculature. These studies identify H-ferritin as an iron transport protein and suggest the presence of an H-ferritin receptor for mediating iron delivery. The relative amount of iron that could be delivered via H-ferritin could make this protein a predominant player in cellular iron delivery. blood-brain barrier; iron transport; H-ferritin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号