首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4oC) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4oC) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 oC). We find that there exists an optimum temperature (-4oC) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials.  相似文献   

2.
定期转种法和低温冷冻保存法是临床实验室最常用的两种真菌保存方法,为比较两种方法保藏致病真菌活性的能力,本研究使用两种保藏方法对实验室689株致病真菌保藏5年后进行检测。定期转种法是将菌落接种于马铃薯斜面培养基并将其储存在4℃冰箱,每6个月转种1次。低温冷冻法是挑取马铃薯斜面培养基上生长良好的菌落于无菌10%甘油中,放置在-80℃储存。保藏5年后,将两种方法保藏的菌株转种复苏,比较菌株的复活率。对于念珠菌属Candida、新生隐球菌Cryptococcus neoformans、毛癣菌属Trichophyton、曲霉属Aspergillus和孢子丝菌属Sporothirix真菌,两种方法的菌株复活率无统计学差异;对于小孢子菌属Microsporum真菌和马尔尼菲蓝状菌Talaromyces marneffei,使用低温冷冻法保藏的菌株复活率高于定期转种法保藏的菌株复活率;对于着色霉属Fonsecaea真菌,低温冷冻法保藏的菌株复活率低于定期转种法保藏的菌株复活率。因此,我们认为对于常见致病真菌的长期保藏,使用10%甘油作为保护剂的低温冷冻法优于定期转种法,但其不适用于着色霉属Fonsecaea真菌的长期保藏。  相似文献   

3.
The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6?months storage at 4 and 25?°C. None of the yeast cultures showed a significant loss in viable cell count during 6?months of storage at 4?°C upon lyophilisation and preservation in dry rice cakes. During storage at 25?°C in the dark, yeast cultures preserved in dry rice cakes, and lyophilised cultures of Saccharomyces cerevisiae and Issatchenkia orientalis showed no significant loss of viable cells up to 4?months of storage. Yeast cultures preserved in dry plant fibre strands had the greatest loss of viable count during the 6?months of storage at 25?°C. Preservation of yeasts cultures in dry rice cakes provided better survival during storage at 4?°C than lyophilisation. The current study demonstrated that traditional methods can be useful and effective for starter culture preservation in small-scale, low-tech applications.  相似文献   

4.
Flow cytometry is a valuable tool in biomedical and animal sciences. However, equipment used for such analysis presents limitations at field conditions, suggesting then preservation procedures for future analysis at laboratory conditions. In this study, freezing at low (−20 °C), ultra-low (−80 °C) and cryogenic temperatures (−196 °C, i.e. liquid nitrogen) were used as preservation procedures of fish tissue. Samples were maintained in 0.9% NaCl or lysing solution, and stored at the temperatures above for 0 (fresh control), 60, 120 and 180 days of storage. After storage, the samples were thawed and proceeded to flow cytometric analysis. Storage at low temperatures (−20 °C), both in lysing and 0.9% NaCl, exhibited poor results when analyzed after 60, 120 and 180 days, showing noisy peaks, deviation in the DNA content and absence of peaks. Ultralow (−80 °C) and cryogenic (−196 °C) temperatures, both in lysing solution and 0.9% NaCl, showed good results and high quality of histograms. Both storage procedures gave similar histograms and DNA content in comparison with control group (fresh) even after 60, 120 and 180 days of storage, exhibiting the main peak at 2C content from diploid cells and a secondary peak at 4C derived from dividing cells. In conclusion, samples may be stored for 180 days at −80 °C and −196 °C in both, 0.9% NaCl or lysing solution. As cryogenic temperatures in liquid nitrogen permits indefinite storage, this procedure should be used for long-term preservation.  相似文献   

5.
Two strains ofFlammulina velutipes were cultured on PDA plates, and mycelial disks punched out using a cork borer were used for preservation. Five disks of a strain were put into a vial containing one of three cryoprotectants, 10% glycerol, 5% DMSO or 10% polyethylene glycol. Vials were then stored for 7 yr at −20°C, −85°C or liquid nitrogen temperature. The mycelial growth on PDA plates of the cryopreserved mycelial disks, as well as the usual subcultures, were tested two times. After the second test, spawns were prepared for fruit-body production tests by bottle cultivation from selected plates of the second growth tests. The yields of fruit-bodies varied among the cultures derived from the mycelial disks of the same strain preserved under different conditions. Variation in yields was observed even among the mycelial disks preserved at liquid nitrogen temperature, although the range of yield variation was narrower. The yield variation was obvious for the cultures which showed large retardation in the growth test. Four mycelial disks out of the six preserved at −20°C showed higher yields than those preserved at other temperatures. Among the cultures derived from strain FMC224, the control cultures preserved by subculture showed the lowest yield.  相似文献   

6.
The effects of moisture content and temperature on the medium-term (3-4 months) storage of conidia of Metarhizium flavoviride were investigated. Conidia harvested after 24 days of culturing on rice showed greater tolerance to long storage than conidia from 12-day cultures. The moisture content of the conidia was of greatest importance; at harvest from the culture, conidial moisture contents could be 40%, while the optimal moisture content for storage was found to be 4-5%. Dried conidia stored in oil benefited from the addition of dried silica gel, as did conidia stored as powder. A range of mineral oils proved satisfactory for storage, and when dried silica gel was added to suspensions, germination levels were 79.8% after 105 days at 28-32 C. Dried conidia stored in oil maintained germination levels of up to 96 and 85% after 80 days at 10-14 C and 28-32 C respectively. Dried conidia stored as powder retained germination levels of 95% at 10-14 C, but only up to 27% at 28-32 C. In another experiment, dried conidia maintained greater than 90% germination over 128 days, with or without silica gel at 10 - 14 C or -15 - -18 C.  相似文献   

7.
Two temperate mushroom cultures namely Agaricus bisporus (U-3) and Pleurotus florida (PAU-5) were evaluated for their physiological (linear growth and biomass production), biochemical (β-1,4 endoglucanase production) and fruiting behaviour after preservation in 10% (v/v) glycerol and storage at room temperature (25–35°C), −20°C and −196°C for 6 months with the objective of establishing the recovery/changes in these fungi after storage. Studies indicated that the viability and recovery of A. bisporus and P. florida is affected by the storage conditions. Both the fungi could be best stored in liquid nitrogen for longer durations but for regular use, conventional sub-culturing was appropriate.  相似文献   

8.
The purpose of this study is to evaluate whether sample preservation can affect the yield of nucleic acid extracts from environmental samples. Storage of microbial samples was studied using three sediment types of varying carbon contents (10–57% carbon of dry weight). Four different storage solutions were tested at three temperatures. Freezing of samples at ?20 °C or ?80 °C, either without preservative or in phenol–chloroform solution, retained nucleic acid quantities very efficiently. Storage of samples in phenol–chloroform solution at +4 °C also gave good yields except for sediment with extremely high-carbon content. Ethanol and RNAlater® preservation decreased nucleic acid yields drastically at all temperatures. To study how sample preservation may affect the result of microbial community analysis, one type of sediment was selected for length heterogeneity-PCR analysis and PCR cloning of the 16S rRNA genes. Ethanol and RNAlater® preservation caused a slight bias towards certain microbial types in the community analyses shown by underrepresentation of Bacteroidetes, Betaproteobacteria and Gammaproteobacteria-affiliated peak sizes and overrepresentation of Actinobacteria, Chloroflexi and Alphaproteobacteria-affiliated peak sizes. Based on the results of this study, preservation in phenol–chloroform solution can be recommended as an alternative storage method when freezing is not possible such as during extended field sampling; however, ethanol and RNAlater® may cause serious problems when used as preservatives for environmental samples containing humic acids.  相似文献   

9.
Conidia of Metarhizium flavoviride were cultured under a range of conditions and stored , with or without clays and silica gel , as powder or in oil . Fungal biomass was produced in shake flasks in liquid media containing nutrients before being added to sterilized rice for conidial production . Conidia pre - cultured under a low C:N ratio , or dried over a 9 - day period compared with 2 days before being placed in storage , showed greatest loss of viability . Conidia stored at 10 o C survived better than those stored at + 30 o C . A range of clays had no significant effect on storage of dried conidia but montmorillonite K10 clay was often harmful in terms of conidial viability . Conidia survived better when stored as dry powder than when stored in a mixture of mineral and vegetable oils . The addition of silica gel proved beneficial even when dried conidia were being stored .  相似文献   

10.
Brucella abortus strain RB51 (SRB51) is a new cattle vaccine that is approved for use in the U.S. for prevention of brucellosis. At the present time, other countries are implementing or considering the use of SRB51 vaccine in their brucellosis control programs. In the current study, the effect of three stabilizing media, two fill volumes (1 and 3 ml), and three storage temperatures (-25, 4 and 25 degrees C) on the viability of lyophilized SRB51 over a 52 week period was determined. The effects of three concentrations of bacteria (5 x 10(8), 1 x 10(9), or 5 x 10(9) cfu/ml) and two storage temperatures (4 or 25 degrees C) on viability of liquid SRB51 vaccine were also determined. For lyophilized strain RB51 vaccine, fill volume did not influence viability (P> 0.05) during lyophilization. Although fill volume did not influence viability during storage in World Health Organization (WHO) media or media containing both WHO and Lactose Salt (LS) media, 1 ml fill volumes of SRB51 in LS media had greater (P< 0.05) viability when compared to 3 ml fill volumes. Lyophilized SRB51 vaccine stored at 25 degrees C had a more rapid decline in viability (P< 0.05) when compared to vaccine stored at -25 or 4 degrees C. With the exception of the 3-ml fill volumes of LS media, all three stabilizing media were similar in maintaining viability of SRB51 at -25 degrees C storage temperatures. However, when compared to WHO or WHO/LS media, stabilization in LS media was associated with a more rapid decline in viability during storage at 4 or 25 degrees C (P< 0.05). Initial SRB51 concentration in liquid vaccine did not influence (P> 0.05) viability during storage at 4 or 25 degrees C. When compared to liquid SRB51 vaccine stored at 25 degrees C, storage at 4 degrees C was associated with a slower decline in viability (P< 0.05) during 12 weeks of storage. Biochemical and morphological characteristics of SRB51 were stable under the storage conditions utilized in the present study. This study suggests that viability of SRB51 can be readily maintained during storage as a lyophilized or liquid brucellosis vaccine.  相似文献   

11.
A preservation technique was tested on 162 strains of culturally fastidious fungi sensitive to lyophilization, representing five classes. The results indicated that liquid nitrogen storage of frozen specimens may be used as an alternative to lyophilization for long-term preservation of stock cultures of fungi. The fungus was frozen in 10% (v/v) glycerol-water menstruum in heat-sealed ampoules. The cooling from ambient temperatures to -35 C was controlled at a rate of approximately 1 C per minute. Further cooling to the storage temperature of -165 to -196 C was uncontrolled and took place at an accelerated rate. Frozen ampoules were thawed in a water bath at 38 to 40 C. Viable and unmutated cultures were developed from reactivated specimens after storage for as long as 5 years.  相似文献   

12.
BackgroundOne of the main problems for the preservation of genetics resources of Agaricus subrufescens is to maintain the viability of the strains because the mycelium is very sensitive to cooling and therefore it ages rapidly.AimsEvaluate the viability of A. subrufescens strains stored as cultures on sorghum grain (spawn) at different temperatures.MethodsEighteen strains of A. subrufescens and three strains of Agaricus bisporus were studied. Spawn's viability was evaluated under the following conditions: (1) control at 25 °C (C), (2) cooling to 4 °C (R) and (3) freezing in liquid nitrogen at ?196 °C (LN). Samples were recovered from week 4 every 2 weeks until week 12 and week 24 in C and R, whereas in LN samples were recovered at 4, 12 and 24 weeks. Viability was evaluated in 50 seeds, by strain and condition, recovering the mycelium in Petri dishes with potato dextrose agar medium (PDA). Mycelium growth was also evaluated on PDA after 14 days of recovery.ResultsMost strains showed 100% viability and they were recovered usually in 1 day. In LN the viability ranged between 84 and 100% depending on the strain, but in some cases recovery took more than 10 days. Mycelial growth decreased gradually over time and although the results show significant differences between treatments C and R, the decline is associated with ageing of the mycelium rather than the treatment itself.ConclusionsCulture on sorghum grain and storage at low temperature is an interesting way to preserve genetic resources of A. subrufescens.  相似文献   

13.
Agriculture by-products were applied to proliferate biomass of Trichoderma atroviride TRS40 in solid state fermentation (SSF) cultures. The culture media overgrown with mycelium together with conidia were preserved by fluidised bed drying at various temperatures (50°C, 60°C and 70°C) and the received biopreparations were stored for 12 months. In order to determine the suitability of TRS40 in the production of biopreparations, the influence of preservation process and storage time on their survivability was examined. The three-component mixture proved more effective in the SSF cultures, ensuring TRS40 count at 6.07?×?109?CFU/g?dm, which was ca. 6 times higher than in the mono-component medium. TRS40 survivability after preservation at various temperatures ranged from 40.4% to 100%, regardless of carrier type. In turn, after 12-month storage of the biopreparations produced on the three-component medium, regardless of drying temperature, the number of viable cells ranged from 2.43?×?108 to 2.49?×?108?CFU/g?dm. Furthermore, selected parameters of growth kinetics in the Bioscreen C system were determined. The storage time of biopreparations had various effects on growth kinetic parameters. In addition, the preserved preparations based on the TRS40 retained their capability for biosynthesis of hydrolases, even after 12 months of storage.  相似文献   

14.
Storage of brewing yeasts by liquid nitrogen refrigeration   总被引:1,自引:0,他引:1       下载免费PDF全文
Many yeast strains are difficult to maintain in culture in a stable state, and long-term preservation by lyophilization, which has proved useful for other fungi, has given poor results with brewing yeasts. As an alternative to continuous subculture, which maximizes strain variability, various methods of cryogenic storage were investigated. Yeast strains were frozen with or without cryoprotectants (such as glycerol or inositol) and stored at -196 C. Recovery after warming was estimated from plate counts, and survivors were screened to detect changes in the frequency of morphological types, respiratory-deficient mutants, and glycerol-sensitive mutants. Strains varied in their sensitivity to freezing, and survival was modified by the growth medium, the freezing munstrua, and the freezing conditions. Suspension of cells in 10% (vol/vol) glycerol, cooled at 1 C/min, warmed rapidly and plated on malt-yeast extract-glucose-peptone agar produced the highest percentage of viable colonies with a minimal change in metabolic characteristics. In two of the strains tested, no significant increase in mutation rate was detected under any of the treatments; the strains were maintained in a stable state and were metabolically comparable to unfrozen strains. In one strain of Saccharomyces uvarum after some freezing treatments, the percentage of respiratory-deficient mutants increased markedly, the fermentation rate declined, and a loss of flocculation occurred. The freezing parameters which increased the level of respiratory-deficient cells should be avoided in maintaining this strain. Maintenance of cultures of brewing yeasts by cryogenic storage has several advantages over other preservation techniques: the method is simple and reproducible, the cultures have remained stable over a 3-year test period, and the viability is high.  相似文献   

15.
Several conditions that allow the preservation, storage and rapid, efficient recovery of viable Acanthamoeba castellanii organisms were investigated. The viability of trophozoites (as determined by time to confluence) significantly declined over a period of 12 months when stored at -70 degrees C using dimethyl sulfoxide (DMSO; 5 or 10%) as cryopreservant. As A. castellanii are naturally capable of encystment, studies were undertaken to determine whether induced encystment might improve the viability of organisms under a number of storage conditions. A. castellanii cysts stored in the presence of Mg2+ at 4 degrees C remained viable over the study period, although time to confluence was increased from approximately 8 days to approximately 24 days over the 12-month period. Storage of cysts at -70 degrees C with DMSO (5 or 10%) or 40% glycerol, but not 80% glycerol as cryopreservants increased their viability over the 12-month study period compared with those stored at room temperature. Continued presence of Mg2+ in medium during storage had no adverse effects and generally improved recovery of viable organisms. The present study demonstrates that A. castellanii can be stored as a non-multiplicative form inexpensively, without a need for cryopreservation, for at least 12 months, but viability is increased by storage at -70 degrees C.  相似文献   

16.
Recovery of 66 fungus stock cultures including Oomycota, Zygomycota, Ascomycota, Basidiomycota, and mitosporic mycetes were examined after cryopreservation. Almost all the stock cultures remained viable when the mycelia that had grown over the sawdust medium containing 10% glycerol as the cryoprotectant (65% moisture content, W/W) were frozen rapidly at −85°C and then allow to thaw naturally at room temperature. Test stock cultures were preserved for more than 10 years by this preservation method without any programmed precooling and rapid thawing for their cryopreservation. Most of the test fungi could survive for 5 years in medium containing 10% glycerol even after alternate freezing and thawing at intervals of 6 months. When a strain of Flammulina velutipes was tested for mycelial growth rate and productivity of fruit-bodies after cryopreservation for 3 years, the fungus reproduced with its initial capability. These results demonstrate that the sawdust-freezing method using a cryoprotectant is expected to be a reliable and easy preservation method for fungus stock cultures. Received: December 7, 2000 / Accepted: December 19, 2001  相似文献   

17.
The same substratum formulation to grow Agaricus bisporus has been used to grow Agaricus brasiliensis since its culture started in Brazil. Despite being different species, many of the same rules have been used for composting or axenic cultivation when it comes to nitrogen content and source in the substrate. The aim of this study was to verify the mycelial growth of A. brasiliensis in different ammonium sulfate and (or) urea concentrations added to cassava fiber and different carbon-to-nitrogen (C:N) ratios to increase the efficiency of axenic cultivation. Two nitrogen sources (urea and (or) ammonium sulfate) added to cassava fiber were tested for the in vitro mycelial growth in different C:N ratios (ranging from 2.5:l to 50:l) in the dark at 28 degrees C. The radial mycelial growth was measured after 8 days of growth and recorded photographically at the end of the experiment. Nitrogen from urea enhanced fungal growth better than ammonium sulfate or any mixture of nitrogen. The best C:N ratios for fungal growth were from 10:l to 50:l; C:N ratios below 10:l inhibited fungal growth.  相似文献   

18.
Fully grown broth cultures of various fast- and slow-growing rhizobia were deliberately diluted with various diluents before their aseptic incorporation into autoclaved peat in polypropylene bags (aseptic method) or mixed with the peat autoclaved in trays (tray method). In a factorial experiment with the aseptic method, autoclaved and irradiated peat samples from five countries were used to prepare inoculants with water-diluted cultures of three Rhizobium spp. When distilled water was used as the diluent, the multiplication and survival of rhizobia in the peat was similar to that with diluents having a high nutrient status when the aseptic method was used. In the factorial experiment, the mean viable counts per gram of inoculant were log 9.23 (strain TAL 102) > log 8.92 (strain TAL 82) > log 7.89 (strain TAL 182) after 24 weeks of storage at 28°C. The peat from Argentina was the most superior for the three Rhizobium spp., with a mean viable count of log 9.0 per g at the end of the storage period. The quality of inoculants produced with diluted cultures was significantly (P = 0.05) better with irradiated than with autoclaved peat, as shown from the factorial experiment. With the tray method, rhizobia in cultures diluted 1,000-fold or less multiplied and stored satisfactorily in the presence of postinoculation contaminants, as determined by plate counts, membrane filter immunofluorescence, and plant infection procedures. All strains of rhizobia used in both the methods showed various degrees of population decline in the inoculants when stored at 28°C. Fast- and slow-growing rhizobia in matured inoculants produced by the two methods showed significant (P < 0.01) decline in viability when stored at 4°C, whereas the viability of some strains increased significantly (P < 0.01) at the same temperature. The plant effectiveness of inoculants produced with diluted cultures and autoclaved peat did not differ significantly from that of inoculants produced with undiluted cultures and gamma-irradiated peat.  相似文献   

19.
Studies were conducted on the interaction of various parameters which affect the storage stability and growth potential of liquid cultures of Pasteurella tularensis live vaccine strain (LVS) and Rift Valley fever virus Van Wyk strain (RVFV). Storage variables studied with LVS included four storage temperatures (4, -20, -65, -175 C), single and multiple freeze-thaw cycles, two freezing and two thawing rates (slow and fast), various inoculum levels (1, 3, 5, and 10%) for the determination of growth potential, and the retention of immunizing potential (mice and guinea pig) after storage. Neither the freezing rate nor the number of freeze-thaw cycles seriously affected the growth of LVS after storage at -175C; however, the slow rate of thaw proved deleterious as were all temperatures of storage except -175 C after 1 year of storage, as shown by both criteria of evaluation. RVFV produced in two combinations of cell lines and media (LM cell line-199 peptone medium and LDR cell line-Eagle's minimum essential medium) was stored at three serum levels (10, 20, 40%), three pH values (6.2., 7.0, 7.8), and three temperatures (-20, -65, -175 C). These studies indicated: (i) virus produced in the LDR cell line and Eagle's medium was more stable than that produced in the LM cell line and 199 peptone medium for either short- or long-term storage; (ii) serum levels did not affect stability; and (iii) low pH resulted in losses during long-term storage under all conditions tested. Thus, cryogenic storage is advantageous for stock culture maintenance of bacteria and viruses and for other similar applications.  相似文献   

20.
The optimal duration and conditions for storage of soils collected for nematode community analyses are unknown. To study this issue, three types of soils with different geographical origins from the subarctic to cool-temperate Japan were kept at three temperature levels (5, 10, and 20(°)C) for up to 8 wk following collection. During the storage period, nematode population density was measured, and community structure was assessed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). No significant changes in the population density or diversity of nematodes (Shannon-Wiener Diversity Index) were observed during storage compared to initial states, except that density in an andosol collected from Tsukuba, Central Japan decreased significantly after 28 d of storage at 5(°)C. However, a regression analysis showed a declining trend in nematode density in the latter half of the storage period when soils were stored at 5 or 20(°)C, depending on the geographic origin of the soil. These results indicate that soils can be stored for 14 d at 5-20(°)C, with 10(°)C as optimal. This is the first study to experimentally determine the optimal preservation conditions for nematode assemblages in soils that are to be analyzed using PCR-DGGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号