首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The utilization of actinomycetes as potential soybean (Glycine max (L.)) co-inoculants was evaluated. Soil samples from Carbondale and Belleville, Ill., were used to inoculate pre-germinated soybean plants to determine antibiotic sensitivity in the native Bradyrhizobium japonicum population. Sensitivity was in the order kanamycin > tetracycline > oxytetracycline > rifampicin > neomycin. Antagonism by five actinomycete cultures toward seven test strains of B. japonicum was also assessed. The ranking average inhibition (across all seven B. japonicum strains) by these actino mycetes was Streptomyces kanamyceticus = Streptomyces coeruleoprunus > Streptomyces rimosus > Streptomyces sp. > Amy colatopsis mediterranei. Ten antibiotic combinations were used to isolate antibiotic-resistant mutants of B. japonicum I-110 and 3I1B-110 via successive cycles of mutation. Eighty-one antibiotic-resistant strains were isolated and tested for symbiotic competency; nine of which were selected for further characterization in a greenhouse pot study. Few differences in nodule number were caused by these treatments. Nodule occupancy varied from 0% to 18.3% when antibiotic-resistant strains of B. japonicum were used as the sole inoculants. However, when three mutant strains of B. japonicum were co-inoculated with S. kanamyceticus, significant increases in nodule occupancy (up to 55%) occurred. Increases in shoot nitrogen composition (27.1%-40.9%) were also caused by co-inoculation with S. kanamyceticus.  相似文献   

2.
Production of Bradyrhizobium japonicum inoculants is problematic because high inoculation rates are necessary but expensive, while production of rhizobial Nod factors (lipo-chitooligosaccharides (LCOs)), key signal molecules in the establishment of legume-rhizobia symbioses, may be inhibited at high culture cell densities. We conducted experiments to determine the effects of growth medium N source on B. japonicum growth, LCO production, and early nodulation of soybean. We found that 1.57 mmol ammonium nitrate x L(-1) resulted in less rhizobial growth and rhizobial capacity to produce LCOs (on a per cell basis) than did 0.4 g yeast extract x L(-1), which contained the same amount of N as the ammonium nitrate. Increasing yeast extract to 0.8 g x L(-1) increased rhizobial growth and LCO production on a volume basis (per litre of culture) and did not affect cell capacity to produce LCOs; however, at 1.4 g yeast extract x L(-1) per cell, production was reduced. A mixture of 0.8 g yeast extract x L(-1) and 1.6 g casein hydrolysate x L(-1) resulted in the greatest bacterial growth and LCO production on a volume basis but reduced LCO production per cell. Changes in organic N level and source increased production of some of the measured LCOs more than others. LCO production was positively correlated with cell density when expressed on a volume basis; however, it was negatively correlated on a per cell basis. We conclude that although quorum sensing affected Nod factor production, increased levels of organic N, and specific compositions of organic N, increased LCO production on a volume basis. Greenhouse inoculation experiments showed that the medium did not modify nodule number and N fixation in soybean, suggesting that it could have utility in inoculant production.  相似文献   

3.
4.
应用BOX分子标记技术筛选南苜蓿高效根瘤菌菌株   总被引:1,自引:0,他引:1  
【目的】应用BOX-PCR技术对12株南苜蓿(Medicago polymorpha)接种根瘤菌菌株在土壤中的竞争结瘤能力进行研究,以占瘤率的高低配合植物生长性状最终确定与南苜蓿共生的高效根瘤菌菌株。【方法】对接种根瘤菌产生的南苜蓿根瘤进行分离培养,选择部分结瘤菌株和12株全部供试接种菌株进行BOX分子指纹图谱研究,经过对图谱的比较与分析获得了各接种菌株的占瘤率。【结果】在供试菌株中,来自于云南盈江的菌株SWF67523占瘤率最高,为93.33%,说明菌株SWF67523具有较强的竞争结瘤能力,该菌株对南苜蓿干重增幅也较高,为100%;菌株SWF67409来自于云南楚雄,其占瘤率略低于菌株SWF67523,但其对提高植物干重的贡献最大(增幅106.5%);来自于云南楚雄的菌株SWF67394占瘤率较低,但其结瘤率高,对植物生长的影响作用也较明显。【结论】将根瘤菌菌株的竞争结瘤能力纳入南苜蓿高效根瘤菌菌株的筛选中,研究获得了一株竞争结瘤能力强、显著提高植物生物量的菌株SWF67523,以及促生根瘤菌菌株SWF67409和SWF67394,为生产高效根瘤菌菌剂提供了物质基础。  相似文献   

5.
Infection of soybean root hairs by Bradyrhizobium japonicum is the first of several complex events leading to nodulation. In the current proteomic study, soybean root hairs after inoculation with B. japonicum were separated from roots. Total proteins were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. In one experiment, 96 protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to compare protein profiles between uninoculated roots and root hairs. Another 37 spots, derived from inoculated root hairs over different timepoints, were also analyzed by tandem MS (MS/MS). As expected, some proteins were differentially expressed in root hairs compared with roots (e.g., a chitinase and phosphoenolpyruvate carboxylase). Out of 37 spots analyzed by MS/MS, 27 candidate proteins were identified by database comparisons. These included several proteins known to respond to rhizobial inoculation (e.g., peroxidase and phenylalanine-ammonia lyase). However, novel proteins were also identified (e.g., phospholipase D and phosphoglucomutase). This research establishes an excellent system for the study of root-hair infection by rhizobia and, in a more general sense, the functional genomics of a single, plant cell type. The results obtained also indicate that proteomic studies with soybean, lacking a complete genome sequence, are practical.  相似文献   

6.
Selected Bradyrhizobium japonicum strains inoculated on soybean seeds often fail to occupy a significant proportion of nodules when a competitor rhizobial population is established in the soil. This competition problem could result from a genetic/ physiological advantage of the adapted soil population over the introduced inoculant or from a positional advantage, as the soil population already occupies the soil profile where the roots will penetrate, whereas the inoculant remains concentrated around the seeds. Here, we have assessed the contribution of these factors with a laboratory model in which a rhizobial population is established in sterile vermiculite. We observed that the wild-type strain B. japonicum LP 3004 was able to grow in pots with N-free plant nutrient solution-watered vermiculite for six or seven generations with a duplication rate of at least 0.7 day(-1). In addition, the rhizobial population persisted for 3 months with 10(6)-10(7) colony-forming units ml(-1) of the vermiculite-retained solution. N-starved, young rhizobial cultures are more efficient in performing several steps along their early association with soybean roots. However, N starvation during growth of rhizobia used for seed inoculation did not enhance their competitiveness against a 1 month vermiculite-established rhizobial population, which occupied more than 72% of the nodules. When a similarly established rhizobial population was recovered from the vermiculite and homogeneously suspended in plant nutrient solution, these cells were significantly less competitive (29% of nodules occupied) than rhizobia obtained from a fresh, logarithmic culture in a N-poor minimal medium, thus indicating that cell position rather than intrinsic competitiveness was the determinant for nodule occupation.  相似文献   

7.
Mutualistic symbiosis and nitrogen fixation of legume rhizobia play a key role in ecological environments. Although many different rhizobial species can form nodules with a specific legume, there is often a dominant microsymbiont, which has the highest nodule occupancy rates, and they are often known as the “most favorable rhizobia”. Shifts in the most favorable rhizobia for a legume in different geographical regions or soil types are not well understood. Therefore, in order to explore the shift model, an experiment was designed using successive inoculations of rhizobia on one legume. The plants were grown in either sterile vermiculite or a sandy soil. Results showed that, depending on the environment, a legume could select its preferential rhizobial partner in order to establish symbiosis. For perennial legumes, nodulation is a continuous and sequential process. In this study, when the most favorable rhizobial strain was available to infect the plant first, it was dominant in the nodules, regardless of the existence of other rhizobial strains in the rhizosphere. Other rhizobial strains had an opportunity to establish symbiosis with the plant when the most favorable rhizobial strain was not present in the rhizosphere. Nodule occupancy rates of the most favorable rhizobial strain depended on the competitiveness of other rhizobial strains in the rhizosphere and the environmental adaptability of the favorable rhizobial strain (in this case, to mild vermiculite or hostile sandy soil). To produce high nodulation and efficient nitrogen fixation, the most favorable rhizobial strain should be selected and inoculated into the rhizosphere of legume plants under optimum environmental conditions.  相似文献   

8.
The effects of Bradyrhizobium japonicum inoculation and pre-plant additions of N fertilizer on soybean ( Glycine max L. Merrill) yields and levels of N2 fixation were studied under field conditions at two sites in Thailand. Bacterial inoculants were composed of B. japonicum strains selected for high N2 fixation levels in Thai soils. Nitrogen fertilizer addition rates used were from 0 to 250 kg N/ha in 50 kg N/ha increments. At the Chiang Mai site in northern Thailand, bacterial inoculation increased nodule weights on plants receiving 100 kg N/ha or less. Increases in nodule parameters due to inoculation were evident at 45 d after planting (DAP) but disappeared by 60 DAP. Addition of N fertilizers decreased the incidence of nodulation and sap ureide contents and decreased the contribution of N2 fixation to the N content of plants at maturity as measured by N-15 isotope dilution methods. At the Kampang Saen site in central Thailand, bacterial inoculation had significant positive effects on nodule numbers and weights, ARA, sap ureide contents and levels of N2 fixed as measured by N-15 isotope dilution methods. Addition of N fertilizers at this site also reduced the effectiveness of N2-fixing symbioses. It was concluded that small additions of N fertilizer added before planting did not significantly decrease N2 fixation levels, but did have a significant positive effect on plant growth. Larger N additions would reduce N2 fixation levels in excess of the benefits of adding more N in chemical form.  相似文献   

9.
The symbiotic and competitive performances of two highly effective rhizobia nodulating French bean P. vulgaris were studied in silty loam and clayey soils. The experiments were carried out to address the performance of two rhizobia strains (CE3 and Ph. 163] and the mixture thereof with the two major cultivated bean cultivars in two soil types from major growing French bean areas in Egypt. Clay and silty loam soils from Menoufia and Ismailia respectively were planted with Bronco and Giza 6 phaseolus bean cultivars. The data obtained from this study indicated that rhizobial inoculation of Giza 6 cultivar in clayey soil showed a positive response to inoculation in terms of nodule numbers and dry weight. This response was also positive in dry matter and biomass accumulation by the plants. The inoculant of strain CE3 enhanced plant growth and N-uptake relative to Ph. 163. However, the mixed inoculant strains were not always as good as single strain inoculants. The competition for nodulation was assessed using two techniques namely fluorescent antibody testing (FA) and REP-PCR fingerprinting. The nodule occupancy by inoculant strain Ph. 163 in both soils occupied 30-40% and 38-50 of nodules of cultivar Bronco. The mixed inocula resulted in higher proportions of nodules containing CE3 in silty loam soil and Ph. 163 in clayey soil. The native rhizobia occupied at least 50% of the nodules on the Bronco cultivar. For cultivar Giza 6, the native rhizobia were more competitive with the inoculant strains. Therefore, we suggest using the studied strains as commercial inocula for phaseolus bean.  相似文献   

10.
Cowpea (Vigna unguiculata) and mung bean (Vigna radiata) are important legume crops yet their rhizobia have not been well characterized. In the present study, 62 rhizobial strains isolated from the root nodules of these plants grown in the subtropical region of China were analyzed via a polyphasic approach. The results showed that 90% of the analyzed strains belonged to or were related to Bradyrhizobium japonicum, Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense and Bradyrhizobium elkanii, while the remaining represented Rhizobium leguminosarum, Rhizobium etli and Sinorhizobium fredii. Diverse nifH and nodC genes were found in these strains and their symbiotic genes were mainly coevolved with the housekeeping genes, indicating that the symbiotic genes were mainly maintained by vertical transfer in the studied rhizobial populations.  相似文献   

11.
Rhizobial inoculation plays an important role in yielding enhancement of soybean, but it is frequently disturbed by competition with bacterial population present in the soil. Identification of potential indigenous rhizobia as competitive inoculants for efficient nodulation and N(2)-fixation of soybean was assessed under laboratory and field conditions. Two indigenous bradyrhizobial isolates (MPSR033 and MPSR220) and its derived different antibiotic (streptomycin and gentamicin) and phage (RT5 and RT6)-resistant mutant strains were used for competition study. Nodulation occupancy between parent and mutant strains was compared on soybean cultivar JS335 under exotic condition. Strain MPSR033 Sm(r)?V(r) was found highly competitive for nodule occupancy in all treatment combinations. On the basis of laboratory experiments four indigenous strains (MPSR033, MPSR033 Sm(r), MPSR033 Sm(r)?V(r), MPSR220) were selected for their symbiotic performance along with two exotic strains (USDA123 and USDA94) on two soybean cultivars under field conditions. A significant symbiotic interaction between Bradyrhizobium strains and soybean cultivar was observed. Strain MPSR033 Sm(r)?V(r) was found superior among the rhizobial treatments in seed yield production with both cultivars. The 16S rRNA region sequence analysis of the indigenous strains showed close relationship with Bradyrhizobium yuanmingense strain. These findings widen out the usefulness of antibiotic-resistance marked phage-resistant bradyrhizobial strains in interactive mode for studying their symbiotic effectiveness with host plant, and open the way to study the mechanism of contact-dependent growth inhibition in rhizobia.  相似文献   

12.
A Bradyrhizobium japonicum USDA 110-derived strain able to produce wider halos in soft-agar medium than its parental strain was obtained by recurrent selection. It was more chemotactic than the wild type towards mannitol and three amino acids. When cultured in minimal medium with mannitol as a single carbon-source, it had one thick subpolar flagellum as the wild type, plus several other flagella that were thinner and sinusoidal. Root adsorption and infectivity in liquid media were 50-100% higher for the selected strain, but root colonization in water-unsaturated vermiculite was similar to the wild type. A field experiment was then carried out in a soil with a naturalized population of 1.8 x 10(5) soybean-nodulating rhizobia g of soil(-1). Bradyrhizobium japonicum strains were inoculated either on the soybean seeds or in the sowing furrows. Nodule occupation was doubled when the strains were inoculated in the sowing furrows with respect to seed inoculation (significant with P<0.05). On comparing strains, nodule occupation with seed inoculation was 6% or 10% for the wild type or selected strains, respectively, without a statistically significant difference, while when inoculated in the sowing furrows, nodule occupation increased to 12% and 22%, respectively (differences significant with P<0.05).  相似文献   

13.
AIMS: A major reason for the ineffectiveness of legume inoculants in the field is the rapid death of rhizobia because of desiccation. The major purpose of this study was to identify conditions under which alpha,alpha-trehalose would improve survival of Bradyrhizobium japonicum during desiccation. METHODS AND RESULTS: Trehalose was added to cultures just prior to desiccation or was supplied to bacteria during the 6-day growth period. A wide variety of trehalose concentrations was tested. Trehalose added to cultures at the time of desiccation improved survival slightly, but trehalose loading during growth was much more effective in protection against desiccation. Growth of bacteria with 3 mmol l-1 trehalose increased trehalose concentration in cells by about threefold and increased survival of cells placed on soya bean [Glycine max (L.) Merr.] seeds by two- to four-fold after 2 or 24 h. Average of overall results indicate that growth of bacteria with trehalose in the medium resulted in a 294% increase in survival after 24 h of desiccation. The concentration of trehalose in cells was very highly correlated with survival of bacteria. When trehalose-loaded cells were suspended in buffer or water, 60-85% of cellular trehalose was lost in about 1 h and, in spite of these losses, survival during desiccation was not reduced. CONCLUSIONS: Accumulation of trehalose in the cytoplasm is critical to the survival of B. japonicum during desiccation. Increasing the periplasmic concentration of trehalose is also beneficial but is not so critical as the concentration of trehalose in the cytoplasm. Because B. japonicum cannot utilize trehalose as a carbon source, cells can be loaded with trehalose by providing the disaccharide during the growth period. SIGNIFICANCE AND IMPACT OF THE STUDY: Although it may not be practical to use trehalose as a carbon source in inoculant production, it may be possible to engineer greater trehalose accumulation in rhizobia. Trehalose concentration in cells should be a useful predictor of survival during desiccation.  相似文献   

14.
Two selective media proposed for the enumeration of Bradyrhizobium japonicum were tested using six strains of different origin and eight different commercial soybean inoculants. These media contained tetracycline, rifampicin and chloramphenicol to control bacterial contaminants, and cycloheximide and pimafucin to control fungal contaminants. They were compared with previously described selective media and plant infection technique counts. The proposed media provided better control of contaminants than previously described media, gave counts of B. japonicum similar to those obtained by the plant infection technique, and so may be used for quality control of commercial inoculants.  相似文献   

15.
The production and quality of rhizobial inoculants in many developing countries is limited by the availability of suitable carriers or technological limitations. Experiments were conducted to evaluate the potential of various inexpensive and widely available carrier materials. The carriers, evaluated, were: perlite with pH adjusted with calcium carbonate or charcoal, 1:4 mixtures of perlite and malt residue, sugarcane bagasse, coal, and rice husk. We also contrasted sterilisation procedures (autoclaving or gamma irradiation) and incubation after injection (with or without initial two weeks incubation at 28 °C) for these various carriers. Survival of Bradyrhizobium japonicum strain CB1809 was monitored over a period of 6 months upon storage at 4 °C. Most carriers evaluated, were able to maintain rhizobial populations of more than 1 × 109 rhizobia per gram of inoculant over that time period, with mixtures of perlite with either sugarcane bagasse or malt residue supporting the largest rhizobial populations and a mixture of perlite and rice husk the lowest. All carriers supported rhizobial growth over the 6 months period. Initially, rhizobial populations were greater with gamma irradiation than autoclaving, however after 6 months, this response was significant only with the perlite and sugarcane bagasse mixture. The incubation of the inoculant after injection also ultimately did not benefit rhizobial levels for any of the carriers, tested. Using simple sterilisation procedures and without incubating after injection, perlite based carriers can produce high quality inexpensive inoculants, maintaining bacterial populations of more than 1 × 109/g rhizobia for at least 6 months.  相似文献   

16.
Bradyrhizobium japonicum 532C nodulates soybean effectively under cool Canadian spring conditions and is used in Canadian commercial inoculants. The major lipo-chitooligosaccharide (LCO), bacteria-to-plant signal was characterized by HPLC, FAB-mass spectroscopy MALDI-TOF mass spectroscopy and revealed to be LCO Nod Bj-V (C18:1, MeFuc). This LCO is produced by type I strains of B. japonicum and is therefore unlikely to account for this strains superior ability to nodulate soybean under Canadian conditions. We also found that use of yeast extract mannitol medium gave similar results to that of Bergerson minimal medium.  相似文献   

17.
The effects of root exudate (RE) treatment on nodule occupancy by Bradyrhizobium japonicum were investigated by a rapid colored-nodule assay, which is based on the observation that B. japonicum L-110 and its antibiotically marked derivatives form dark-red nodules on certain soybean (Glycine max) cultivars, whereas other strains form beige nodules. The efficacy of the assay was confirmed by direct immunofluorescence and by antibiotic platings of nodule bacteria. Both logarithmic- and stationary-phase cultures of the reference strain, L-110Nal, were used in paired-competition studies with RE-treated or untreated cells of seven challenge strains. On the basis of field and greenhouse competition studies, these strains were placed into three competitiveness groups: high (AN-11, AN-16aStrRif, and AN-6), intermediate (AN-3 and 122SR), and low (I-110ARS and AN-18). Seedlings of G. max cv. Centennial were inoculated with two ratios of challenge to reference strain, 1:1 and 1:9, and nodule occupancy was determined after the V4 to V5 stage of ontogeny. Two of the strains showed increased occupancy in response to RE treatment at the 1:1 inoculation ratio. Logarithmic- and stationary-phase cultures of AN-6 showed increased occupancy, from 22 to 38% (P < 0.10) and from 23 59 39% (P < 0.05), respectively. While the maximum increase for stationary-phase cultures of AN-16aStrRif was from 34 to 47% (P < 0.05), logarithmic-phase cultures failed to respond to RE treatment. The results of these studies indicate that RE treatment increases the nodule occupancy of some, but not all, B. japonicum strains and that the colored-nodule assay could be rapidly and reliably used to determine the competitive ability of B. japonicum.  相似文献   

18.
Rhizobia are bacteria well known for their ability to fix nitrogen in symbiosis with leguminous plants. Members of diverse rhizobial species grow at the expense of hydroaromatic and aromatic compounds commonly found in plant cells and plant litter. Using a quantitative capillary assay to measure chemotaxis, we tested the ability of hydroaromatic acids, selected aromatic acids, and their metabolites to serve as chemoattractants for two distantly related rhizobial species, Bradyrhizobium japonicum and Rhizobium trifolii. Slow-growing B. japonicum I-110 demonstrated positive chemotaxis to shikimate, quinate, protocatechuate, and vanillate; threshold concentrations for the compounds were as low as 10(-6) M. The dicarboxylic acids succinate and beta-ketoadipate, metabolites in the catabolism of many aromatic compounds, were positive chemoattractants with low threshold concentrations as well. Taxis to beta-ketoadipate occurred constitutively and, of the tested compounds, beta-ketoadipate gave the strongest peak response. Taxis to shikimate or quinate was induced by growth on either substrate but not by growth on protocatechuate or succinate. In contrast, fast-growing R. trifolii 2066 was only weakly attracted to quinate and other aromatic and dicarboxylic acids that were strong attractants for B. japonicum. The R. trifolii strain exhibited positive chemotaxis to shikimate, but the threshold concentration of shikimate required to elicit a response (10(-4) M) was 2 orders of magnitude higher than that for the B. japonicum strain.  相似文献   

19.
Interactions of soybean with Bradyrhizobium japonicum 123 (serogroup 123) and 138 (serogroup c1) were used to examine the relationship between early infection rates, competition for nodulation, and patterns of nodule occupancy. Both strains formed more infections in autoclaved soil (sterile soil) than in untreated soil (unsterile soil). Inoculation did not increase numbers of infection threads in unsterile soil-grown plants, where infection of proximal portions of primary roots was complete by 5 days after planting. Both strains infected and nodulated at similar rates in sterile soil. Nodules were always clustered on the upper root system, regardless of inoculation and soil treatment. Sixty-seven percent of the nodules of uninoculated plants grown in unsterile soil were occupied by rhizobia belonging to serogroups other than 123 or c1. Inoculation with strain 123 or 138 increased occupancy by that strain at the expense of residency by other rhizobia. Eighty-three percent of all nodules on plants dually inoculated with both strains in sterile soil contained strain 138. The corresponding value for plants inoculated in unsterile soil was 31%. Neither inoculum strain dominated occupancy of first-formed nodules in unsterile soil. It appears that north central Missouri soil may not have populations of highly competitive serogroup 123 and that early infection and nodulation rates do not contribute to the competitive success of strain 138.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号