首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Young bean plants (Phaseolus vulgaris L. cv Seafarer) grew faster in air enriched with CO2 (1200 microliters per liter) than in ambient CO2 (330 microliters per liter). However, by 7 days when increases in overall growth (dry weight, leaf area) were visible, there was a significant decline (about 25%) in the leaf mineral content (N, P, K, Ca, Mg) and a drop in the activity of two enzymes of carbon fixation, carbonic anhydrase and ribulose 1,5-bisphosphate (RuBP) carboxylase under high CO2. Although the activity of neither enzyme was altered in young, expanding leaves during the acclimation period, in mature leaves the activity of carbonic anhydrase was reduced 95% compared with a decline of 50% in ambient CO2. The drop in RuBP carboxylase was less extreme with 40% of the initial activity retained in the high CO2 compared with 50% in the ambient atmosphere. While CO2 enrichment might alter the flow of carbon into the glycolate pathway by modifying the activities of carbonic anhydrase or RuBP carboxylase, there is no early change in the ability of photosynthetic tissue to oxidize glycolate to CO2.  相似文献   

2.
Carbon exchange capacity of cucumber (Cucumis sativus L.) germinated and grown in controlled environment chambers at 1000 microliters per liter CO2 decreased from the vegetative growth stage to the fruiting stage, during which time capacity of plants grown at 350 microliters per liter increased. Carbon exchange rates (CERs) measured under growth conditions during the fruiting period were, in fact, lower in plants grown at 1000 microliters per liter CO2 than those grown at 350. Progressive decreases in CERs in 1000 microliters per liter plants were associated with decreasing stomatal conductances and activities of ribulose bisphosphate carboxylase and carbonic anhydrase. Leaf starch concentrations were higher in 1000 microliters per liter CO2 grown-plants than in 350 microliters per liter grown plants but calcium and nitrogen concentrations were lower, the greatest difference occurring at flowering. Sucrose synthase and sucrose-P-synthase activities were similar in 1000 microliters per liter compared to 350 microliters per liter plants during vegetative growth and flowering but higher in 350 microliters per liter plants at fruiting. The decreased carbon exchange rates observed in this cultivar at 1000 microliters per liter CO2 could explain the lack of any yield increase (MM Peet 1986 Plant Physiol 80: 59-62) when compared with plants grown at 350 microliters per liter.  相似文献   

3.
Cells of a high CO2-requiring mutant (E1) and wild type of Synechococcus PCC7942 were incubated with COS in the light, then suspended in COS-free medium and their CO2 exchange was measured using an open gas-analysis system under the conditions where photosynthetic CO2 fixation is inhibited. When the suspension of cells untreated with COS was illuminated, the rate of CO2 uptake was high and addition of carbonic anhydrase during illumination released a large amount of CO2 from the medium into the gas phase. The COS treatment in the light markedly reduced the rate of CO2 uptake by the cells and the amount of CO2 released by carbonic anhydrase. Incubation of cells with COS in the dark had no effect on the CO2-exchange profile. The COS concentration required for 50% inhibition of CO2 uptake was about 25 micromolar when the concentration of inorganic carbon (Ci) in the medium was 60 micromolar; higher Ci concentrations reduced the inhibitory effect of COS. Measurement of Ci uptake in E1 cells by a silicone oil centrifugation method also indicated marked reduction of the activities of 14CO2 and H14CO3 uptake in the cells treated with COS in the light. The results demonstrated that COS is a potent inhibitor of Ci transport.  相似文献   

4.
A shortage in the zinc supply to spinach (Spinacia oleracea L.) drastically reduced carbonic anhydrase levels with little effect on net CO2 uptake per unit leaf area, except with the most severe zinc stresses. Under these conditions, carbonic anhydrase was below 10% and photosynthesis 60 to 70% of the control levels. When photosynthesis was measured at a range of CO2 supply levels, zinc-deficient leaves were less efficient at 300 to 350 microliters per liter CO2 and above, but the same as controls at lower CO2 levels. This suggests that carbonic anhydrase does not affect the diffusion of CO2, and that the effect of zinc deficiency was on the photosynthetic process itself. Our evidence does not support the hypothesis that carbonic anhydrase has some role in facilitating the supply of CO2 to the sites of carboxylation within the chloroplast.  相似文献   

5.
Photosynthetic carbon assimilation in plants is regulated by activity of the ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase. Although the carboxylase requires CO2 to activate the enzyme, changes in CO2 between 100 and 1,400 microliters per liter did not cause changes in activation of the leaf carboxylase in light. With these CO2 levels and 21% O2 or 1% or less O2, the levels of ribulose bisphosphate were high and not limiting for CO2 fixation. With high leaf ribulose bisphosphate, the Kact(CO2) of the carboxylase must be lower than in dark, where RuBP is quite low in leaves. When leaves were illuminated in the absence of CO2 and O2, activation of the carboxylase dropped to zero while RuBP levels approached the binding site concentration of the carboxylase, probably by forming the inactive enzyme-RuBP complex.

The mechanism for changing activation of the RuBP carboxylase in the light involves not only Mg2+ and pH changes in the chloroplast stroma, but also the effects of binding RuBP to the enzyme. In light when RuBP is greater than the binding site concentration of the carboxylase, Mg2+ and pH most likely determine the ratio of inactive enzyme-RuBP to active enzyme-CO2-Mg2+-RuBP forms. Higher irradiances favor more optimal Mg2+ and pH, with greater activation of the carboxylase and increased photosynthesis.

  相似文献   

6.
Lycopersicon esculentum Mill. cv Vedettos and Lycopersicon chmielewskii Rick, LA 1028, were exposed to two CO2 concentrations (330 or 900 microliters per liter) for 10 weeks. The elevated CO2 concentrations increased the initial ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity of both species for the first 5 weeks of treatment but the difference did not persist during the last 5 weeks. The activity of Mg2+-CO2-activated Rubisco was higher in 900 microliters per liter for the first 2 weeks but declined sharply thereafter. After 10 weeks, leaves grown at 330 microliters per liter CO2 had about twice the Rubisco activity compared with those grown at 900 microliters per liter CO2. The two species showed the same trend to Rubisco declines under high CO2 concentrations. The percent activation of Rubisco was always higher under high CO2. The phosphoenolpyruvate carboxylase (PEPCase) activity measured in tomato leaves averaged 7.9% of the total Rubisco. PEPCase showed a similar trend with time as the initial Rubisco but with no significant difference between nonenriched and CO2-enriched plants. Long-term exposure of tomato plants to high CO2 was previously shown to induce a decline of photosynthetic efficiency. Based on the current study and on previous results, we propose that the decline of activated Rubisco is the main cause of the acclimation of tomato plants to high CO2 concentrations.  相似文献   

7.
A simple model based on HCO3 transport has been developed to relate photosynthesis and inorganic carbon fluxes for the marine cyanobacterium, Synechococcus sp. Nägeli (strain RRIMP N1). Predicted relationships between inorganic carbon transport, CO2 fixation, internal carbonic anhydrase activity, and leakage of CO2 out of the cell, allow comparisons to be made with experimentally obtained data. Measurements of inorganic carbon fluxes and internal inorganic carbon pool sizes in these cells were made by monitoring time-courses of CO2 changes (using a mass spectrometer) during light/dark transients. At just saturating CO2 conditions, total inorganic carbon transport did not exceed net CO2 fixation by more than 30%. This indicates CO2 leakage similar to that estimated for C4 plants.

For this leakage rate, the model predicts the cell would need a conductance to CO2 of around 10−5 centimeters per second. This is similar to estimates made for the same cells using inorganic carbon pool sizes and CO2 efflux measurements. The model predicts that carbonic anhydrase is necessary internally to allow a sufficiently fast rate of CO2 production to prevent a large accumulation of HCO3. Intact cells show light stimulated carbonic anhydrase activity when assayed using 18O-labeled CO2 techniques. This is also supported by low but detectable levels of carbonic anhydrase activity in cell extracts, sufficient to meet the requirements of the model.

  相似文献   

8.
Wheat (Triticum aestivum L. cv Albis) was grown in open-top chambers in the field and fumigated daily with charcoal-filtered air (0.015 microliters per liter O3), nonfiltered air (0.03 microliters per liter O3), and air enriched with either 0.07 or 0.10 microliters per liter ozone (seasonal 8 hour/day [9 am-5 pm] mean ozone concentration from June 1 until July 10, 1987). Photosynthetic 14CO2 uptake was measured in situ. Net photosynthesis, dark respiration, and CO2 compensation concentration at 2 and 21% O2 were measured in the laboratory. Leaf segments were freeze-clamped in situ for the determination of the steady state levels of ribulose 1,5-bisphosphate, 3-phosphoglycerate, triose-phosphate, ATP, ADP, AMP, and activity of ribulose, 1,5-bisphosphate carboxylase/oxygenase. Photosynthesis of flag leaves was highest in filtered air and decreased in response to increasing mean ozone concentration. CO2 compensation concentration and the ratio of dark respiration to net photosynthesis increased with ozone concentration. The decrease in photosynthesis was associated with a decrease in chlorophyll, soluble protein, ribulose bisphosphate carboxylase/oxygenase activity, ribulose bisphosphate, and adenylates. No decrease was found for triose-phosphate and 3-phosphoglycerate. The ratio of ATP to ADP and of triosephosphate to 3-phosphoglycerate were increased suggesting that photosynthesis was limited by pentose phosphate reductive cycle activity. No limitation occurred due to decreased access of CO2 to photosynthetic cells since the decrease in stomatal conductance with increasing ozone concentration did not account for the decrease in photosynthesis. Ozonestressed leaves showed an increased degree of activation of ribulose bisphosphate carboxylase/oxygenase and a decreased ratio of ribulose bisphosphate to initial activity of ribulose bisphosphate carboxylase/oxygenase. Nevertheless, it is suggested that photosynthesis in ozone stressed leaves is limited by ribulose bisphosphate carboxylation possibly due to an effect of ozone on the catalysis by ribulose bisphosphate carboxylase/oxygenase.  相似文献   

9.
Cotton (Gossypium hirsutum L. cv Stoneville 213) was grown at 350 and 1000 microliters per liter CO2. The plants grown at elevated CO2 concentrations contained large starch pools and showed initial symptoms of visible physical damage. Photosynthetic rates were lower than expected based on instantaneous exposure to high CO2.

A group of plants grown at 1000 microliters per liter CO2 was switched to 350 microliters per liter CO2. Starch pools and photosynthetic rates were monitored in the switched plants and in the two unswitched control groups. Photosynthetic rates per unit leaf area recovered to the level of the 350 microliters per liter CO2 grown control group within four to five days. To assess only nonstomatal limitations to photosynthesis, a measure of photosynthetic efficiencies was calculated (moles CO2 fixed per square meter per second per mole intercellular CO2). Photosynthetic efficiency also recovered to the levels of the 350 microliters per liter CO2 grown controls within three to four days.

Recovery was correlated to a rapid depletion of the starch pool, indicating that the inhibition of photosynthesis is primarily a result of feedback inhibition. However, complete recovery may involve the repair of damage to the chloroplasts caused by excessive starch accumulation. The rapid and complete reversal of photosynthetic inhibition suggests that the appearance of large, strong sinks at certain developmental stages could result in reduction of the large starch accumulations and that photosynthetic rates could recover to near the theoretical capacity during periods of high photosynthate demand.

  相似文献   

10.
Suspension cultures of cotton (Gossypium hirsutum), Amaranthus cruentus, A. powellii, Datura innoxia, and a Nicotiana tabacum-N. glutinosa fusion hybrid were adapted to grow photoautotrophically under continuous light. The cotton strain grew with an atmosphere of ambient CO2 (about 0.06 to 0.07% in the culture room) while the other strains required elevated CO2 levels (5%). Photoautotrophy was indicated by the requirement for CO2 and for light for growth. The strains grew with doubling times near 14 days and had from 50 to 600 micrograms of chlorophyll per gram of fresh weight. The cells grew in small to moderate sized clumps with cell sizes from 40 to 70 micrometers (diameter). Like most photoautotrophic cultures described so far the ribulose 1,5-bisphosphate carboxylase (RuBPcase) activity levels were well below those of mature leaves. The phosphoenolpyruvate carboxylase levels were not elevated in the C4Amaranthus species. The cells showed high dark respiration rates and had lower net CO2 fixation under high O2 conditions. Dark CO2 fixation rates ranged from near 10 to 30% of that in light. Fluorescence emission spectra measurements show that the cell antenna pigments systems of the four strains examined are similar to that of chloroplasts of green plants. The cotton strain which was capable of growth under ambient CO2 conditions showed the unique properties of a high RuBPcase activation level in ambient CO2 and a stable ability to show net CO2 fixation in 21% O2 conditions.  相似文献   

11.
Inorganic carbon (Ci) uptake was measured in wild-type cells of Chlamydomonas reinhardtii, and in cia-3, a mutant strain of C. reinhardtii that cannot grow with air levels of CO2. Both air-grown cells, that have a CO2 concentrating system, and 5% CO2-grown cells that do not have this system, were used. When the external pH was 5.1 or 7.3, air-grown, wild-type cells accumulated inorganic carbon (Ci) and this accumulation was enhanced when the permeant carbonic anhydrase inhibitor, ethoxyzolamide, was added. When the external pH was 5.1, 5% CO2-grown cells also accumulated some Ci, although not as much as air-grown cells and this accumulation was stimulated by the addition of ethoxyzolamide. At the same time, ethoxyzolamide inhibited CO2 fixation by high CO2-grown, wild-type cells at both pH 5.1 and 7.3. These observations imply that 5% CO2-grown, wild-type cells, have a physiologically important internal carbonic anhydrase, although the major carbonic anhydrase located in the periplasmic space is only present in air-grown cells. Inorganic carbon uptake by cia-3 cells supported this conclusion. This mutant strain, which is thought to lack an internal carbonic anhydrase, was unaffected by ethoxyzolamide at pH 5.1. Other physiological characteristics of cia-3 resemble those of wild-type cells that have been treated with ethoxyzolamide. It is concluded that an internal carbonic anhydrase is under different regulatory control than the periplasmic carbonic anhydrase.  相似文献   

12.
Membrane-permeable and impermeable inhibitors of carbonic anhydrase have been used to assess the roles of extracellular and intracellular carbonic anhydrase on the inorganic carbon concentrating system in Chlamydomonas reinhardtii. Acetazolamide, ethoxzolamide, and a membrane-impermeable, dextran-bound sulfonamide were potent inhibitors of extracellular carbonic anhydrase measured with intact cells. At pH 5.1, where CO2 is the predominant species of inorganic carbon, both acetazolamide and the dextran-bound sulfonamide had no effect on the concentration of CO2 required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]) or inorganic carbon accumulation. However, a more permeable inhibitor, ethoxzolamide, inhibited CO2 fixation but increased the accumulation of inorganic carbon as compared with untreated cells. At pH 8, the K0.5(CO2) was increased from 0.6 micromolar to about 2 to 3 micromolar with both acetazolamide and the dextran-bound sulfonamide, but to a higher value of 60 micromolar with ethoxzolamide. These results are consistent with the hypothesis that CO2 is the species of inorganic carbon which crosses the plasmalemma and that extracellular carbonic anhydrase is required to replenish CO2 from HCO3 at high pH. These data also implicate a role for intracellular carbonic anhydrase in the inorganic carbon accumulating system, and indicate that both acetazolamide and the dextran-bound sulfonamide inhibit only the extracellular enzyme. It is suggested that HCO3 transport for internal accumulation might occur at the level of the chloroplast envelope.  相似文献   

13.
We have examined the induction of carbonic anhydrase activity in Chlamydomonas reinhardtii and have identified the polypeptide responsible for this activity. This polypeptide was not synthesized when the alga was grown photoautotrophically on 5% CO2, but its synthesis was induced under low concentrations of CO2 (air levels of CO2). In CW-15, a mutant of C. reinhardtii which lacks a cell wall, between 80 and 90% of the carbonic anhydrase activity of air-adapted cells was present in the growth medium. Furthermore, between 80 and 90% of the carbonic anhydrase is released if wild type cells are treated with autolysin, a hydrolytic enzyme responsible for cell wall degradation during mating of C. reinhardtii. These data extend the work of Kimpel, Togasaki, Miyachi (1983 Plant Cell Physiol 24: 255-259) and indicate that the bulk of the carbonic anhydrase is located either in the periplasmic space or is loosely bound to the algal cell wall. The polypeptide associated with carbonic anhydrase activity has a molecular weight of approximately 37,000. Several lines of evidence indicate that this polypeptide is responsible for carbonic anhydrase activity: (a) it appears following the transfer of C. reinhardtii from growth on 5% CO2 to growth on air levels of CO2, (b) it is located in the periplasmic space or associated with the cell wall, like the bulk of the carbonic anhydrase activity, (c) it binds dansylamide, an inhibitor of the enzyme which fluoresces upon illumination with ultraviolet light, (d) antibodies which inhibit carbonic anhydrase activity only cross-react with this 37,000 dalton species.  相似文献   

14.
The CO2 compensation point of the submersed aquatic macrophyte Hydrilla verticillata varied from high (above 50 microliters per liter) to low (10 to 25 microliters per liter) values, depending on the growth conditions. Plants from the lake in winter or after incubation in an 11 C/9-hour photoperiod had high values, whereas summer plants or those incubated in a 27 C/14-hour photoperiod had low values. The plants with low CO2 compensation points exhibited dark 14CO2 fixation rates that were up to 30% of the light fixation rates. This fixation reduced respiratory CO2 loss, but did not result in a net uptake of CO2 at night. The low compensation point plants also showed diurnal fluctuations in titratable acid, such as occur in Crassulacean acid metabolism plants. However, dark fixation and diurnal acid fluctuations were negligible in Hydrilla plants with high CO2 compensation points.  相似文献   

15.
Growth at an elevated CO2 concentration resulted in an enhanced capacity for soybean (Glycine max L. Merr. cv Bragg) leaflet photosynthesis. Plants were grown from seed in outdoor controlled-environment chambers under natural solar irradiance. Photosynthetic rates, measured during the seed filling stage, were up to 150% greater with leaflets grown at 660 compared to 330 microliters of CO2 per liter when measured across a range of intercellular CO2 concentrations and irradiance. Soybean plants grown at elevated CO2 concentrations had heavier pod weights per plant, 44% heavier with 660 compared to 330 microliters of CO2 per liter grown plants, and also greater specific leaf weights. Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activity showed no response (mean activity of 96 micromoles of CO2 per square meter per second expressed on a leaflet area basis) to short-term (~1 hour) exposures to a range of CO2 concentrations (110-880 microliters per liter), nor was a response of activity (mean activity of 1.01 micromoles of CO2 per minute per milligram of protein) to growth CO2 concentration (160-990 microliters per liter) observed. The amount of rubisco protein was constant, as growth CO2 concentration was varied, and averaged 55% of the total leaflet soluble protein. Although CO2 is required for activation of rubisco, results indicated that within the range of CO2 concentrations used (110-990 microliters per liter), rubisco activity in soybean leaflets, in the light, was not regulated by CO2.  相似文献   

16.
Burnell JN  Hatch MD 《Plant physiology》1988,86(4):1252-1256
Bundle sheath cells from leaves of a variety of C4 species contained little or no carbonic anhydrase activity. The proportion of total leaf carbonic anhydrase in extracts of bundle sheath cells closely reflected the apparent mesophyll cell contamination of bundle sheath cell extracts as measured by the proportion of the mesophyll cell marker enzymes phosphoenolpyruvate carboxylase and pyruvate,Pi dikinase. Values of about 1% or less of the total leaf activity were obtained for all three enzymes. The recorded bundle sheath carbonic anhydrase activity was compared with a calculated upper limit of carbonic anhydrase activity that would still permit efficient functioning of the C4 pathway; that is, a carbonic anhydrase level allowing a sufficiently high steady state [CO2] to suppress photorespiration. Even before correcting for mesophyll cell contamination the activity in bundle sheath cell extracts was substantially less than the calculated upper limit of carbonic anhydrase activity consistent with effective C4 function. The results accord with the notion that a deficiency of carbonic anhydrase in bundle sheath cells is vital for the efficient operation of the C4 pathway.  相似文献   

17.
Marine macroalgae possess a range of mechanisms to increase the availability of CO2 for fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase. Of these, possession of a periplasmic or external carbonic anhydrase and the ability to use bicarbonate ions is widely distributed. The mechanisms of carbon acquisition were studied in two estuarine red macroalgae Bostrychia scorpioides and Catenella caespitosa using a range of techniques. pH-drift and CO2-depletion experiments at constant pH suggested that CO2 is the main source of inorganic carbon in both species. Inhibitors indicated that internal and external carbonic anhydrase were present in both species. Inhibitors also suggested that uptake of bicarbonate is unlikely to be present (P < 0.05).  相似文献   

18.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated which is deficient in carbonic anhydrase (EC 4.2.1.1) activity. This mutant strain, designated ca-1-12-1C (gene locus ca-1), was selected on the basis of a high CO2 requirement for photoautotrophic growth. Photosynthesis by the mutant at atmospheric CO2 concentration was very much reduced compared to wild type and, unlike wild type, was strongly inhibited by O2. In contrast to a CO2 compensation concentration of near zero in wild type at all O2 concentrations examined, the mutant exhibited a high, O2-stimulated CO2 compensation concentration. Evidence of photorespiratory activity in the mutant but not in wild type was obtained from the analysis of photosynthetic products in the presence of 14CO2. At air levels of CO2 and O2, the mutant synthesized large amounts of glycolate, while little glycolate was synthesized by wild type under identical conditions. Both mutant and wild type strains formed only small amounts of glycolate at saturating CO2 concentration. At ambient CO2, wild type accumulated inorganic carbon to a concentration several-fold higher than that in the suspension medium. The mutant cells accumulated inorganic carbon internally to a concentration 6-fold greater than found in wild type, yet photosynthesis was CO2 limited. The mutant phenotype was mimicked by wild type cells treated with ethoxyzolamide, an inhibitor of carbonic anhydrase activity. These observations indicate a requirement for carbonic anhydrase-catalyzed dehydration of bicarbonate in maintaining high internal CO2 concentrations and high photosynthesis rates. Thus, in wild type cells, carbonic anhydrase rapidly converts the bicarbonate taken up to CO2, creating a high internal CO2 concentration which stimulates photosynthesis and suppresses photorespiration. In mutant cells, bicarbonate is taken up rapidly but, because of a carbonic anhydrase deficiency, is not dehydrated at a rate sufficiently rapid to maintain a high internal CO2 concentration.  相似文献   

19.
The effect of sink strength on photosynthetic rates under conditions of long-term exposure to high CO2 has been investigated in soybean. Soybean plants (Merr. cv. Fiskeby V) were grown in growth chambers containing 350 microliters CO2 per liter air until pod set. At that time, plants were trimmed to three trifoliolate leaves and either 21 pods (high sink treatment) or 6 pods (low sink treatment). Trimmed plants were either left in 350 microliters CO2 per liter of air or placed in 1000 microliters CO2 per liter of air (high CO2 treatment) until pod maturity. Whole plant net photosynthetic rates of all plants were measured twice weekly, both at 350 microliters CO2 per liter of air and 1000 microliters CO2 per liter of air. Plants were also harvested at this time for dry weight measurements. Photosynthetic rates of high sink plants at both measurement CO2 concentrations were consistently higher than those of low sink plants, and those of plants given the 350 microliter CO2 per liter of air treatment were higher at both measurement CO2 concentrations than those of plants given the 1000 microliters CO2 per liter of air treatment. When plants were measured under treatment CO2 levels, however, rates were higher in 1,000 microliter plants than 350 microliter CO2 plants. Dry weights of all plant parts were higher in the 1,000 microliters CO2 per liter air treatment than in the 350 microliters CO2 per liter air treatment, and were higher in the low sink than in the high sink treatments.  相似文献   

20.
W. Hüsemann 《Protoplasma》1981,109(3-4):415-431
Summary This communication reports the photoautotrophic growth of hormone and vitamin independent cell suspension cultures ofChenopodium rubrum. The transfer of cells from stationary growth into fresh culture medium results in a high protein formation, followed by an exponential phase of cell division, whereas the onset of rapid chlorophyll formation is delayed for 4 days. At the stage of most rapid cell division there is no net synthesis of starch and sugar. When the cells enter stationary growth, there is a progressive accumulation of chlorophyll, sugar, and starch.Photoautotrophic cell cultures assimilate about 80–90 mol CO2/mg chlorophyll X hour. Dark CO2 fixation is about 3.7% to 2.2% of the light values during exponential and stationary growth, respectively. As shown by short-term14CO2 fixation, CO2 is predominantly assimilated through ribulosebisphosphate carboxylase via the Calvin pathway. There is a significant increase in the14C label of C4 carboxylic acids in exponentially dividing cells as compared to cells from stationary growth. Thein vitro activity of phosphoenolpyruvate carboxylase and ribulosebisphosphate carboxylase is almost equal during exponential cell division. A decrease in cell division activity is accompanied by a significant change in the specific activities of both carboxylation enzymes. In non dividing cells from stationary growth the activity of ribulosebisphosphate carboxylase is greately enhanced and that of phosphoenolpyruvate carboxylase is reduced, documenting the development of carboxylation capacities typical for C3-plants.The experimental results provide evidence that phosphoenolpyruvate carboxylase activity might be regulated by ammonia and could be involved in anaplerotic CO2 fixation which supplies carbon skeletons of the citric acid cycle.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - EDTA ethylene-diamine-tetraacetic acid - FDP fructose bisphosphate - F-6-P fructose-6-phosphate - G-6-P glucose-6-phosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PGA 3-phosphoglyceric acid - PEP phosphoenolpyruvate - RuDP ribulosebisphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号