首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Acquired thermotolerance in plants refers to the ability to cope with lethal high temperatures and it reflects an actual tolerance mechanism that occurs naturally in plants. Tomato (Solanum lycopersicum syn. Lycopersicon esculentum L.) is sensitive to high temperature at all stages of its growth and development. Considering the important role of the heat shock protein gene (sHSP24.4 gene) in imparting tolerance to high temperature stress in the cells and tissues, we isolated small HSP24.4 (MasHSP24.4) cDNA from wild banana (Musa accuminata) and introduced it into the cultivated tomato cv. PKM1 by using Agrobacterium tumefaciens-mediated genetic transformation. Stable integration and expression of the transgene in the tomato genome was demonstrated by Southern, Northern and Western blot analyses. There was no adverse effect of transgene expression on overall growth and development of the transgenic plants. The genetic analysis of the transgenic T2 lines showed that the transgene segregated in a Mendelian ratio. We compared the survival of T2 transgenic lines compared to the control plants after exposure to different levels of high temperature. The gene MasHSP24.4 was expressed in root, shoot and stem tissues under 45 °C treatment and conferred tolerance to high-temperature stress as shown by increased seed germination, healthy vegetative growth and normal fruit and seed setting. The transgenic tomato plants showed significantly better growth performance in the recovery phase following the stress. This thermotolerance appeared to be solely due to overexpression of the sHSP24.4 gene. Thus, the transgenic tomato plants developed during the present investigations can be grown at high temperatures.  相似文献   

3.
4.
Plant HSP101 has dual activities, first, in conferring thermotolerance, and secondly, in serving as a translational activator. In this study, we introduced Oryza sativa Hsp101 (osHsp101) cDNA into tobacco by Agrobacterium-mediated transformation. Stable integration and expression of the transgene into the tobacco genome was demonstrated by Southern and Western blot analysis. Overexpression of osHSP101 had no noticeable effect on growth or development of the transgenic plants. Homozygous T(2) transgenic plants with overexpressed osHSP101 survived heat treatment better than untransformed control plants. In addition, taking advantage of conferring basal thermotolerance by plant HSP101, we were able to demonstrate the feasibility of using osHsp101 as a selection marker and select the transformants under high temperature in tobacco leaf disc transformation mediated by Agrobacterium. Furthermore, transgenic tobacco plants with overexpressed osHSP101 were able to enhance luciferase expression up to 2.9-fold more than untransformed plants in the progeny of reciprocally crossed with omega-luciferase reporter lines.  相似文献   

5.
6.
There is increasing evidence for considerable interlinking between the responses to heat stress (HS) and light signaling. In the present work, we provide molecular evidence that BBX18, a negative regulator in photomorphogenesis belonging to the B-box zinc finger protein family in Arabidopsis thaliana, is involved in the regulation of thermotolerance. Using quantitative RT-PCR, GUS staining and immunoblot analysis, our results indicate that the expression of BBX18 was induced by HS. BBX18-RNAi and 35S::BBX18 transgenic Arabidopsis plants were obtained for functional analysis of BBX18. Under-expression of BBX18 displayed increased both basal and acquired thermotolerance in the transgenic plants, while over-expression of BBX18 reduced tolerance to HS in transgenic lines. Moreover, when wild-type, BBX18-RNAi and 35S::BBX18 transgenic plants were treated with HS, HR-related digalactosyldiacylglycerol synthase 1 (DGD1) was down-regulated by BBX18 in both normal and heat shock conditions. Besides, the expression levels of Hsp70, Hsp101 and APX2 were increased in BBX18-RNAi transgenic plants, but lower in 35S::BBX18 transgenic plants. However, the expression of HsfA2 was lower in BBX18-RNAi transgenic plants and higher in the 35S::BBX18 after high-temperature treatment. These results suggesting that, by modulated expression of a set of HS-responsive genes, BBX18 weakened tolerance to HS in Arabidopsis. So our data indicate that BBX18 plays a negative role in thermotolerance.  相似文献   

7.
Preczewski  P.J.  Heckathorn  S.A.  Downs  C.A.  Coleman  J.S. 《Photosynthetica》2000,38(1):127-134
We recently showed that the chloroplast small heat-shock protein (herein referred to as chlp Hsp24) protects photosystem 2 (PS2) during heat stress, and phenotypic variation in production of chlp Hsp24 is positively related to PS2 thermotolerance. However, the importance of chlp Hsp24 or other Hsps to other aspects of photosynthesis and overall photosynthetic thermotolerance is unknown. To begin investigating this and the importance of genetic variation in Hsp production to photosynthetic thermotolerance, the production of several prominent Hsps and photosynthetic thermotolerance were quantified in nine genotypes of Lycopersicon, and then the relationships between thermotolerance of net photosynthetic rate (P N) and production of each Hsp were examined. The nine genotypes exhibited wide variation in P N thermotolerance and production of each of the Hsps examined (chlp Hsp70, Hsp60, and Hsp24, and cytosol Hsp70). No statistically significant relationship was observed between production of chlp Hsp70 and P N thermotolerance, and only a weak positive relationship between cytosolic Hsp70 and P N was detected. However, significant positive relationships were observed between production of chlp Hsp24 and Hsp60 and P N thermotolerance. Hence natural variation in production of chlp Hsp24 and Hsp60 is important in determining variation in photosynthetic thermotolerance. This is perhaps the first evidence that chlp Hsp60 is involved in photosynthetic thermotolerance, and these in vivo results are consistent with previous in vitro results showing that chlp Hsp24 protects PS2 during heat stress.  相似文献   

8.
In an analysis of 339 independent T 0 transgenic rice lines generated by Agrobacterium-mediated transformation, albino plants appeared in the T 1 generation in two single-copy transgenic lines, O54 and O36 and in one double-copy transgenic line, C18. While the T 0 plants of these three lines were green, albino and green plants emerged in a 1:3 ratio in the T 1 generation. The albino phenotype segregated as a monogenic recessive trait. Southern blot analysis of the green and albino plants in the T 1 generation confirmed that the albino trait and the T-DNA insertion events were unlinked. Segregation of the albino trait from the transgenic trait in the lines O54 and O36 was confirmed in T 2 and T 3 generations, respectively. Homozygous transgenic plants free from the albino trait were also identified. In the double-copy transgenic line C18, we genetically separated the two transgenic loci, out-segregated the albino locus from both transgene loci, and identified homozygous plants for each of the transgenic events by Southern blot analysis in the T 1 generation itself. Thus, we demonstrate that when an albino trait appears in the T 1 generation and is unlinked to a transgene locus, the albino locus can be segregated from the transgene locus and homozygous transgenic lines free from albinos can be established.  相似文献   

9.
Capsicum annuum RING Zinc Finger Protein 1 (CaRZFP1) gene is a novel C3HC4-type RING zinc finger protein gene which was previously isolated from a cDNA library for hot pepper plants treated of heat-shock. The CaRZFP1 was inducible to diverse environmental stresses in hot pepper plants. We introduced the CaRZFP1 into the Wisconsin 38 cultivar of tobacco (Nicotiana tabacum) by Agrobacterium mediated transformation under the control of the CaMV 35S promoter. Expression of the transgene in the transformed tobacco plants was demonstrated by RNA blot analyses. There appeared no adverse effect of over-expression of the transgene on overall growth and development of transformants. The genetic analysis of tested T1 lines showed that the transgene segregated in a Mendelian fashion. Transgenic tobacco lines that expressed the CaRZFP1 gene were compared with several different empty vector lines and they exhibited enhanced growth; they have larger primary root, more lateral root, larger hypocotyls and bigger leaf size, resulting in heavier fresh weight. Enhanced growth of transgenic lines accompanied with longer vegetative growth that resulted in bigger plants with higher number of leaves. Microarray analysis revealed the up-regulation of some growth related genes in the transgenic plants which were verified by specific oligomer RNA blot analyses. These results indicate that CaRZFP1 activates and up-regulates some growth related proteins and thereby effectively promoting plant growth. N. Zeba and M. Isbat contributed equally to the work.  相似文献   

10.
Late embryogenesis abundant (LEA) proteins have been implicated in many stress responses of plants. In this report, a LEA protein gene OsLEA3-1 was identified and over-expressed in rice to test the drought resistance of transgenic lines under the field conditions. OsLEA3-1 is induced by drought, salt and abscisic acid (ABA), but not by cold stress. The promoter of OsLEA3-1 isolated from the upland rice IRAT109 exhibits strong activity under drought- and salt-stress conditions. Three expression constructs consisting of the full-length cDNA driven by the drought-inducible promoter of OsLEA3-1 (OsLEA3-H), the CaMV 35S promoter (OsLEA3-S), and the rice Actin1 promoter (OsLEA3-A) were transformed into the drought-sensitive japonica rice Zhonghua 11. Drought resistance pre-screening of T1 families at anthesis stage revealed that the over-expressing families with OsLEA3-S and OsLEA3-H constructs had significantly higher relative yield (yield under drought stress treatment/yield under normal growth conditions) than the wild type under drought stress conditions, although a yield penalty existed in T1 families under normal growth conditions. Nine homozygous families, exhibiting over-expression of a single-copy of the transgene and relatively low yield penalty in the T1 generation, were tested in the field for drought resistance in the T2 and T3 generations and in the PVC pipes for drought tolerance in the T2 generation. Except for two families (transformed with OsLEA3-A), all the other families (transformed with OsLEA3-S and OsLEA3-H constructs) had higher grain yield than the wild type under drought stress in both the field and the PVC pipes conditions. No significant yield penalty was detected for these T2 and T3 families. These results indicate that transgenic rice with significantly enhanced drought resistance and without yield penalty can be generated by over-expressing OsLEA3-1 gene with appropriate promoters and following a bipartite (stress and non-stress) in-field screening protocol.  相似文献   

11.
The action mechanism of the mitochondrial inhibitor sodium azide on thermotolerance in Saccharomyces cerevisiae was studied. At ambient growth temperature, pretreatment with sodium azide was shown to improve the thermotolerance of parent cells and the hsp104 mutant. Treating with the inhibitor during a mild heat shock suppressed the development of induced thermotolerance due to the inhibition of heat shock protein (Hsp104) synthesis. Treating with the inhibitor immediately before lethal heat shock produced a variety of effects on thermotolerance depending on whether the yeast metabolism was oxidative or fermentative. The conclusions are: (1) the protective effect of sodium azide on the thermotolerance of S. cerevisiae cells grown on glucose-containing medium is not related to Hsp104 functioning, and (2) the mechanisms of basic and induced thermotolerance differ considerably.  相似文献   

12.
13.
14.

Background  

The heat shock protein Hsp70 promotes inducible thermotolerance in nearly every organism examined to date. Hsp70 interacts with a network of other stress-response proteins, and dissecting the relative roles of these interactions in causing thermotolerance remains difficult. Here we examine the effect of Hsp70 gene copy number modification on thermotolerance and the expression of multiple stress-response genes in Drosophila melanogaster, to determine which genes may represent mechanisms of stress tolerance independent of Hsp70.  相似文献   

15.
16.
Identification of differences between genetically modified plants and their original counterparts plays a central role in risk assessment strategy. Our main goal was to better understand the relevance of transgene presence, genetic, and epigenetic changes induced by transgene insertion, and in vitro culture in putative unintended differences between a transgenic and its comparator. Thus, we have used multiplex fluorescence 2DE coupled with MS to characterize the proteome of three different rice lines (Oryza sativa L. ssp. japonica cv. Nipponbare): a control conventional line (C), an Agrobacterium‐transformed transgenic line (Ta) and a negative segregant (NSb). We observed that Ta and NSb appeared identical (with only one spot differentially abundant—fold difference ≥ 1.5), contrasting with the control (49 spots with fold difference ≥1.5, in both Ta and NSb vs. control). Given that in vitro culture was the only event in common between Ta and NSb, we hypothesize that in vitro culture stress was the most relevant condition contributing for the observed proteomic differences. MS protein identification support our hypothesis, indicating that Ta and NSb lines adjusted their metabolic pathways and altered the abundance of several stress related proteins in order to cope with in vitro culture.  相似文献   

17.
Heat shock proteins (Hsps) represent a group of specific proteins which are synthesized primarily in response to heat shock in almost all biological systems. Members of Hsp100 family have been directly implicated in induction of thermotolerance in microbial and animal cells. Yeast cells harbouring defectivehsp104 gene do not show thermotolerance under conditions in which the normal cells do. Several plant species have been shown to synthesize Hsps in the range of 100 kDa. Rice Hsp104 (OsHsp104) is rapidly and predominantly accumulated in heat-shocked cells. Western blotting analysis show that anti rice Hsp104 antibodies (generated against purified Hsp104 protein from cultivated riceOryza sativa L.) cross-react with the same-sized high temperature inducible protein in 15 different wild rices. It was further found that anti rice Hsp104 antibodies also cross-react with a major high temperature regulated protein ofEscherichia coli. We have previously shown that a 110 kDa stress regulated protein in rice (OsHsp110) is immunologically related to yeast Hsp104 protein. In this paper, we present a comparative account of characteristics of the OsHsp104 and OsHsp110 proteins.  相似文献   

18.
Salicylic acid (SA) is reported to protect plants from heat shock (HS), but insufficient is known about its role in thermotolerance or how this relates to SA signaling in pathogen resistance. We tested thermotolerance and expression of pathogenesis-related (PR) and HS proteins (HSPs) in Arabidopsis thaliana genotypes with modified SA signaling: plants with the SA hydroxylase NahG transgene, the nonexpresser of PR proteins (npr1) mutant, and the constitutive expressers of PR proteins (cpr1 and cpr5) mutants. At all growth stages from seeds to 3-week-old plants, we found evidence for SA-dependent signaling in basal thermotolerance (i.e. tolerance of HS without prior heat acclimation). Endogenous SA correlated with basal thermotolerance, with the SA-deficient NahG and SA-accumulating cpr5 genotypes having lowest and highest thermotolerance, respectively. SA promoted thermotolerance during the HS itself and subsequent recovery. Recovery from HS apparently involved an NPR1-dependent pathway but thermotolerance during HS did not. SA reduced electrolyte leakage, indicating that it induced membrane thermoprotection. PR-1 and Hsp17.6 were induced by SA or HS, indicating common factors in pathogen and HS responses. SA-induced Hsp17.6 expression had a different dose-response to PR-1 expression. HS-induced Hsp17.6 protein appeared more slowly in NahG. However, SA only partially induced HSPs. Hsp17.6 induction by HS was more substantial than by SA, and we found no SA effect on Hsp101 expression. All genotypes, including NahG and npr1, were capable of expression of HSPs and acquisition of HS tolerance by prior heat acclimation. Although SA promotes basal thermotolerance, it is not essential for acquired thermotolerance.  相似文献   

19.
The elevation of Hsp104 (heat shock protein) content under heat stress plays a key role in the development of thermotolerance in yeast (Saccharomyces cerevisiae) cells. Hsp104 synthesis is increased under heat stress and in the stationary growth phase. The loss of mitochondrial DNA (petite mutation) was shown to inhibit the induction of Hsp104 synthesis under heat stress (39°C) and during the transition to the stationary growth phase. Also, the petite mutation suppressed the increase in activity of antioxidant enzymes in the stationary phase, which accompanied by decrease in thermotolerance. At the same time, mutation inhibited production of reactive oxygen species and prevented cell death under heat shock in the logarithmic growth phase. The results of this study suggest that disruption of the mitochondrial functional state suppresses the expression of yeast nuclear genes upon upon entry into the stationary growth phase.  相似文献   

20.
Plant biotechnology provides a powerful solution to boost agricultural productivity and nutritional quality. The development process of a transgenic crop includes multiple steps that consist of gene isolation for a target trait, generation of T0 transgenic crops, characterization of the transgene, evaluation of agronomic performance of transgenic crops, selection of elite transgenic lines and assessment of target trait efficacy. Here, we developed elite insect-resistant transgenic rice plants that may satisfy the standards of biosafety assessments. We made a construct with the insecticide cry1Ac gene for a target trait. A total of 310 T0 transgenic lines were generated and underwent extensive analysis. We selected four T3 lines that contain a single-copy transgene inserted into intergenic regions of the rice genome. During this process, we critically analyzed the transgenic lines with five checkpoints that include single copy of transgene, its integration into intergenic region, clean T-DNA arrangement, stability of transgene through generations and substantial equivalence of transgenic plants in agronomic traits other than insect resistance. Consequently, we obtained insect-resistant transgenic rice plants that can be used in practical agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号