首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure–function studies are frequently practiced on the very diverse group of natural carbohydrate-binding modules in order to understand the target recognition of these proteins. We have taken a step further in the study of carbohydrate-binding modules and created variants with novel binding properties by molecular engineering of one such molecule of known 3D-structure. A combinatorial library was created from the sequence encoding a thermostable carbohydrate-binding module, CBM4-2 from a Rhodothermus marinus xylanase, and the phage-display technology was successfully used for selection of variants with specificity towards different carbohydrate polymers (birchwood xylan, Avicel?, ivory nut mannan and recently also xyloglucan), as well as towards a glycoprotein (human IgG4). Our work not only generated a number of binders with properties that would suite a range of biotechnological applications, but analysis the selected binders also helped us to identify residues important for their specificities.  相似文献   

2.
Affinity chromatography is routinely used mostly on a preparative scale to isolate different biomolecules such as proteins and carbohydrates. To this end a variety of proteins is in common use as ligands. To extend the arsenal of binders intended for separation of carbohydrates, we have explored the use of carbohydrate-binding modules (CBM) in affinity chromatography. The thermostable protein CBM4-2 and two variants (X-6 and A-6) thereof, selected from a newly constructed combinatorial library, were chosen for this study. The CBM4-2 predominantly binds to xylans but also crossreacts with glucose-based oligomers. The two CBM-variants X-6 and A-6 had been selected for binding to xylan and Avicel (a mixture of amorphous and microcrystalline cellulose), respectively. To assess the ability of these proteins to separate carbohydrates, they were immobilized to macroporous microparticulate silica and analyses were conducted at temperatures ranging from 25 to 65 degrees C. With the given set of CBM-variants, we were able to separate cello- and xylo-oligomers under isocratic conditions. The affinities of the CBMs for their targets were weak (in the mM-microM range) and by adjusting the column temperature we could optimize peak resolution and chromatographic retention times. The access to thermostable CBM-variants with diverse affinities and selectivities holds promise to be an efficient tool in the field of affinity chromatography for the separation of carbohydrates.  相似文献   

3.
Molecular engineering of ligand-binding proteins is commonly used for identification of variants that display novel specificities. Using this approach to introduce novel specificities into CBMs (carbohydrate-binding modules) has not been extensively explored. Here, we report the engineering of a CBM, CBM4-2 from the Rhodothermus marinus xylanase Xyn10A, and the identification of the X-2 variant. As compared with the wild-type protein, this engineered module displays higher specificity for the polysaccharide xylan, and a lower preference for binding xylo-oligomers rather than binding the natural decorated polysaccharide. The mode of binding of X-2 differs from other xylan-specific CBMs in that it only has one aromatic residue in the binding site that can make hydrophobic interactions with the sugar rings of the ligand. The evolution of CBM4-2 has thus generated a xylan-binding module with different binding properties to those displayed by CBMs available in Nature.  相似文献   

4.
Xylanases are very often modular enzymes composed of one or more catalytic domains and carbohydrate-binding modules (CBMs) connected by a flexible linker region. Usually, when these proteins are processed they lose their carbohydrate-binding capacity. Here, the role of the linker regions and cellulose- or xylan-binding domains in the processing of Xys1L from Streptomyces halstedii JM8 and Xyl30L from Streptomyces avermitilis UAH30 was studied. Xys1 variants with different linker lengths were tested, these being unable to avoid protein processing. Moreover, several fusion proteins between the Xys1 and Xyl30 domains were obtained and their proteolytic stability was studied. We demonstrate that CBM processing takes place even in the complete absence of the linker sequence. We also show that the specific carbohydrate module determines this cleavage in the proteins studied.  相似文献   

5.
Previously, it has been demonstrated that the glycoside hydrolase family 8 xylanase from the psychrophylic bacterium Pseudoalteromonas haloplanktis (XPH) can bind substrate non-catalytically on the surface of its catalytic module. In the present study, the functional relevance of this secondary binding site (SBS) for the enzyme is investigated by site-directed mutagenesis and evaluation of activity and binding properties of mutant variants on a range of structurally different homoxylan and heteroxylan substrates. The SBS had an impact on the activity on insoluble substrates, whereas the activity on soluble substrates remained unaffected. Unexpectedly, the activity on a soluble oligomeric substrate was also affected for some mutants and results on a chromophoric polymeric model substrate were in contrast with the trends observed on the corresponding natural substrate. All in all, results show that the impact of the SBS on the activity of XPH is in part analogous to the functioning of some carbohydrate-binding modules in modular enzymes.  相似文献   

6.
CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-D-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-D-glucosamine-α-1,4-D-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract.  相似文献   

7.
Many polysaccharide-degrading enzymes display a modular structure in which a catalytic module is attached to one or more noncatalytic modules. Several xylanases contain a module of previously unknown function (termed "X6" modules) that had been implicated in thermostability. We have investigated the properties of two such "thermostabilizing" modules, X6a and X6b from the Clostridium thermocellumxylanase Xyn10B. These modules, expressed either as discrete entities or as their natural fusions with the catalytic module, were assayed, and their capacity to bind various carbohydrates and potentiate hydrolytic activity was determined. The data showed that X6b, but not X6a, increased the activity of the enzyme against insoluble xylan and bound specifically to xylooligosaccharides and various xylans. In contrast, X6a exhibited no affinity for soluble or insoluble forms of xylan. Isothermal titration calorimetry revealed that the ligand-binding site of X6b accommodates approximately four xylose residues. The protein exhibited K(d) values in the low micromolar range for xylotetraose, xylopentaose, and xylohexaose; 24 microM for xylotriose; and 50 microM for xylobiose. Negative DeltaH and DeltaS values indicate that the interaction of X6b with xylooligosaccharides and xylan is driven by enthalpic forces. The three-dimensional structure of X6b has been solved by X-ray crystallography to a resolution of 2.1 A. The protein is a beta-sandwich that presents a tryptophan and two tyrosine residues on the walls of a shallow cleft that is likely to be the xylan-binding site. In view of the structural and carbohydrate-binding properties of X6b, it is proposed that this and related modules be re-assigned as family 22 carbohydrate-binding modules.  相似文献   

8.
The field of plant cell wall biology is constantly growing and consequently so is the need for more sensitive and specific probes for individual wall components. Xyloglucan is a key polysaccharide widely distributed in the plant kingdom in both structural and storage tissues that exist in both fucosylated and non-fucosylated variants. Presently, the only xyloglucan marker available is the monoclonal antibody CCRC-M1 that is specific to terminal alpha-1,2-linked fucosyl residues on xyloglucan oligo- and polysaccharides. As a viable alternative to searches for natural binding proteins or creation of new monoclonal antibodies, an approach to select xyloglucan-specific binding proteins from a combinatorial library of the carbohydrate-binding module, CBM4-2, from xylanase Xyn10A of Rhodothermus marinus is described. Using phage display technology in combination with a chemoenzymatic method to anchor xyloglucan to solid supports, the selection of xyloglucan-binding modules with no detectable residual wild-type xylan and beta-glucan-binding ability was achieved.  相似文献   

9.
Affinity electrophoresis was used to identify and quantify the interaction of carbohydrate-binding modules (CBMs) with soluble polysaccharides. Association constants determined by AE were in excellent agreement with values obtained by isothermal titration calorimetry and fluorescence titration. The method was adapted to the identification, study and characterization of mutant carbohydrate-binding modules with altered affinities and specificities. Competition affinity electrophoresis was used to monitor binding of small, soluble mono- and disaccharides to one of the modules.  相似文献   

10.
Three carbohydrate-binding proteins (Mr 35 000, 16 000 and 13 500) were isolated from extracts of mouse 3T3 fibroblasts by affinity chromatography on polyacrylamide beads to which was covalently bound the ligand 6-aminohexyl 4-beta-D-galactosyl-2-acetamido-2-deoxy-beta-D-glucopyranoside. None of these proteins bind to polyacrylamide beads coupled with either 6-aminohexanol or 6-aminohexyl beta-D-galactopyranoside. Therefore they appear to be carbohydrate-binding proteins specific for galactose-terminated glycoconjugates. A carbohydrate-binding protein was also purified from extracts of human foreskin fibroblasts. This protein (Mr 35000) may represent the human counterpart of the mouse protein of similar Mr and binding properties.  相似文献   

11.
The article reports the development of a collection of lentiviral vector constructs enabling time-efficient production and testing of different variants of chimeric antigen receptors (CAR). These artificial surface proteins make it possible to redirect the activity of immune cytotoxic T-cells towards cancer cells. Chimeric antigen receptors usually encompass four functional modules, namely, antigen recognition, flexible linker, transmembrane, and signal modules. The use of modules with different properties allows modulating the affinity and specificity of CAR interaction with target antigens, as well as intensity and quality of activation signaling, which determines the cytotoxic properties of CAR T-cells, as well as their proliferation rate and time of persistence in the organism. The proposed vector system make it possible to easily test various combinations of CAR modules while its being open to distribution allows the direct comparison of the results obtained by different scientific groups.  相似文献   

12.
A focused series of octapeptides based on the lead compound H-His-Ala-Lys-Arg-Arg-Leu-Ile-Phe-NH(2) 1, in which the C-terminal phenylalanine residue was replaced by alpha and/or beta-modified variants, was synthesized using solid-phase chemistry. Both the L-threo-beta-hydroxy-phenylalanine (beta-phenylserine, Pse) and (2S)-phenylalaninol derivatives, as competitive binders at the cyclin-recruitment site, displayed potent inhibitory activity towards the CDK2-cyclin A complex. Unexpectedly, the D-threo-Pse derivatives also showed inhibitory activity.  相似文献   

13.
Clostridium perfringens is a notable colonizer of the human gastrointestinal tract. This bacterium is quite remarkable for a human pathogen by the number of glycoside hydrolases found in its genome. The modularity of these enzymes is striking as is the frequent occurrence of modules having amino acid sequence identity with family 32 carbohydrate-binding modules (CBMs), often referred to as F5/8 domains. Here we report the properties of family 32 CBMs from a C. perfringens N-acetyl-beta-hexosaminidase. Macroarray, UV difference, and isothermal titration calorimetry binding studies indicate a preference for the disaccharide LacNAc (beta-d-galactosyl-1,4-beta-d-N-acetylglucosamine). The molecular details of the interaction of this CBM with galactose, LacNAc, and the type II blood group H-trisaccharide are revealed by x-ray crystallographic studies at resolutions of 1.49, 2.4, and 2.3 A, respectively.  相似文献   

14.
Family 6 carbohydrate-binding modules were amplified by polymerase chain reaction (PCR) from Clostridium stercorarium strain NCIB11754 genomic DNA as a triplet. Individually, these modules bound to xylooligosaccharides and cellooligosaccharides with affinities varying from approximately 3 x 10(3) M(-1) to approximately 1 x 10(5) M(-1). Tandem and triplet combinations of these modules bound co-operatively to soluble xylan and insoluble cellulose to give approximately 20- to approximately 40-fold increases in affinity relative to the individual modules. This co-operativity was an avidity effect resulting from the modules within the tandems and triplet interacting simultaneously with proximal binding sites on the polysaccharides. This occurred by both intrachain and interchain interactions. The duplication or triplication of modules appears to be linked to the growth temperature of the organism; co-operativity in these multiplets may compensate for the loss of affinity at higher temperatures.  相似文献   

15.
The hydrolysis of the plant cell wall by microbial glycoside hydrolases and esterases is the primary mechanism by which stored organic carbon is utilized in the biosphere, and thus these enzymes are of considerable biological and industrial importance. Plant cell wall-degrading enzymes in general display a modular architecture comprising catalytic and non-catalytic modules. The X4 modules in glycoside hydrolases represent a large family of non-catalytic modules whose function is unknown. Here we show that the X4 modules from a Cellvibrio japonicus mannanase (Man5C) and arabinofuranosidase (Abf62A) bind to polysaccharides, and thus these proteins comprise a new family of carbohydrate-binding modules (CBMs), designated CBM35. The Man5C-CBM35 binds to galactomannan, insoluble amorphous mannan, glucomannan, and manno-oligosaccharides but does not interact with crystalline mannan, cellulose, cello-oligosaccharides, or other polysaccharides derived from the plant cell wall. Man5C-CBM35 also potentiates mannanase activity against insoluble amorphous mannan. Abf62A-CBM35 interacts with unsubstituted oat-spelt xylan but not substituted forms of the hemicellulose or xylo-oligosaccharides, and requires calcium for binding. This is in sharp contrast to other xylan-binding CBMs, which interact in a calcium-independent manner with both xylo-oligosaccharides and decorated xylans.  相似文献   

16.
Recent progress in predicting RNA structure is moving towards filling the ‘gap’ in 2D RNA structure prediction where, for example, predicted internal loops often form non-canonical base pairs. This is increasingly recognized with the steady increase of known RNA 3D modules. There is a general interest in matching structural modules known from one molecule to other molecules for which the 3D structure is not known yet. We have created a pipeline, metaRNAmodules, which completely automates extracting putative modules from the FR3D database and mapping of such modules to Rfam alignments to obtain comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22 495 3D modules in all PDB files results in 977 internal loop and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules is available at http://rth.dk/resources/mrm.  相似文献   

17.
The cold-adapted pullulanase Pul13A is an industrial useful amylolytic enzyme, but its low solubility is the major bottleneck to produce the protein in recombinant form. In a previous approach, a complex and time-consuming purification strategy including a step-wise dialysis procedure using decreasing concentrations of urea to renature the insoluble protein from inclusion bodies had been established. In this study, a truncation strategy was developed to facilitate the purification and handling of the type-I pullulanase. Pul13A has a size of 155-kDa with a multidomain architecture that is composed of the following predicted modules: CBM41/E-set/Amy-Pul/DUF3372/E-set/E-set/E-set, with CBM and E-set domains being putative carbohydrate-binding modules, Amy-Pul is the catalytic region and DUF is a domain of unknown function. Consecutive N- and C-terminal deletions of domains were applied to construct minimized enzyme variants retaining pullulanase activity and exhibiting improved renaturation efficiencies. A total of seven truncation constructs were generated and tested, which still led to the production of inclusion bodies. However, the parallel deletion of the exterior CBM41 and E-set domain enabled the direct refolding of active enzymes during one-step dialysis in urea-free buffer. Catalytic properties of truncation construct Pul13A-N1/C1 were not impaired indicating that this enzyme variant may be superior for industrial applications over the full-length pullulanase.  相似文献   

18.
Engineered protein libraries, defined here as a collection of different mutant variants of a single specific protein, are intentionally designed to be rich in molecular diversity and can span ranges from as little as 400 different variants to greater than 10(12) members per library. The goal of engineering libraries is to generate new protein variants, identified upon screening, that possess desired novel properties. Exploitation of the natural organization of the genetic code has led to 'focused' libraries that are lower in overall complexity yet biased towards variants with preferred biophysical properties. An emerging trend, in which computational algorithms are blended with in vivo screens, is also leading towards greater and more rapid success in the field of protein design.  相似文献   

19.
Starch recognition by carbohydrate-binding modules (CBMs) is important for the activity of starch-degrading enzymes. The N-terminal family 41 CBM, TmCBM41 (from pullulanase PulA secreted by Thermotoga maritima) was shown to have alpha-glucan binding activity with specificity for alpha-1,4-glucans but was able to tolerate the alpha-1,6-linkages found roughly every three or four glucose units in pullulan. Using X-ray crystallography, the structures were solved for TmCBM41 in an uncomplexed form and in complex with maltotetraose and 6(3)-alpha-D-glucosyl-maltotriose (GM3). Ligand binding was facilitated by stacking interactions between the alpha-faces of the glucose residues and two tryptophan side-chains in the two main subsites of the carbohydrate-binding site. Overall, this mode of starch binding is quite well conserved by other starch-binding modules. The structure in complex with GM3 revealed a third binding subsite with the flexibility to accommodate an alpha-1,4- or an alpha-1,6-linked glucose.  相似文献   

20.
Enzymes that hydrolyze complex polysaccharides into simple sugars are modular in architecture and consist of single or multiple catalytic domains fused to targeting modules called carbohydrate-binding modules (CBMs). CBMs bind to their ligands with high affinity and increase the efficiency of the catalytic components by targeting the enzymes to its substrate. Here we utilized a multidisciplinary approach to characterize each of the two family 16 carbohydrate-binding domain components of the highly active mannanase from the thermophile Thermoanaerobacterium polysaccharolyticum. These represent the first crystal structures of family 16 CBMs. Calorimetric analysis showed that although these CBMs demonstrate high specificity toward beta-1,4-linked sugars, they can engage both cello- and mannopolysaccharides. To elucidate the molecular basis for this specificity and selectivity, we have determined high resolution crystal structures of each of the two CBMs, as well as of binary complexes of CBM16-1 bound to either mannopentaose or cellopentaose. These results provide detailed molecular insights into ligand recognition and yield a framework for rational engineering experiments designed to expand the natural repertoire of these targeting modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号