首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tobacco knox1 genes tokn1 and tokn2 were isolated and their neomorphic capacities were tested while expressed in tobacco and potato. In addition, their neomorphic capacities were compared to barley bkn3 transgenic plant material. While tokn2 and bkn3 induced epiphylly in tobacco and supercompound leaves in potato, tokn1 failed to produce such prominent knox1 specific phenotypes. In wild type tobacco, alleles of the tokn genes were found to be expressed within distinct zones of the shoot apical meristem (SAM), leaving out regions that correlated with leaf founder cells [1]. In contrast, the expression of the tokn genes was detected throughout the meristem and in leaf primordia of epiphyllous shoots that developed in tobacco over-expressing the barley hooded gene bkn3. It was determined that such extended expression domains of resident tobacco knox1 genes were mediated through an enhanced expression domain of bkn3 within the tissue confined to the epiphylls, and this contributed to “repeated epiphylly”, i.e. an iterated development of epiphyllous shoots on leaves of progenitor epiphylls.  相似文献   

2.
3.
4.
The entire (e) locus of tomato (Solanum lycopersicum L.) controls leaf morphology. Dominant E and recessive e allele of the locus produce pinnate compound and complex reduced leaves. Previous research had indicated that SlIAA9, an Aux/IAA gene, was involved in tomato leaf morphology. Down-regulation of SlIAA9 gene by antisense transgenic method decreased the leaf complex of tomato and converted tomato compound leaves to simple leaves. The leaf morphology of these transgenic lines was similar with leaf morphology of tomato entire mutant. In this paper, we report that a single-base deletion mutation in the coding region of SlIAA9 gene results in tomato entire mutant phenotypes.  相似文献   

5.
Transgenic plants of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L) were produced by transforming with the apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KNOX1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a medium lacking cytokinin. Ectopic expression of KNOX genes retarded shoot growth by suppressing elongation of internodes in transgenic tobacco plants. Expression of each of the three KNOX1 genes induced malformation and extensive lobbing in tobacco leaves. In situ regeneration of adventitious shoots was observed from leaves and roots of transgenic tobacco plants expressing each of the three KNOX genes. In vitro culture of leaf explants and internode sections excised from in vitro grown MdKN1 expressing tobacco shoots regenerated adventitious shoots on MS (Murashige and Skoog 1962) basal medium in the absence of exogenous cytokinin. Transgenic plum plants that expressed the MdKN2 or corn KNOX1 gene grew normally but MdKN1 caused a significant reduction in plant height, leaf shape and size and produced malformed curly leaves. A high frequency of adventitious shoot regeneration (96%) was observed in cultures of leaf explants excised from corn KNOX1-expressing transgenic plum shoots. In contrast to KNOX1-expressing tobacco, leaf and internode explants of corn KNOX1-expressing plum required synthetic cytokinin (thidiazuron) in the culture medium to induce adventitious shoot regeneration. The induction of high-frequency regeneration of adventitious shoots in vitro from leaves and stem internodal sections of plum through the ectopic expression of a KNOX1 gene is the first such report for a woody perennial fruit trees.  相似文献   

6.
In Hydra, developmental processes are permanently active to maintain a simple body plan consisting of a two-layered, radially symmetrical tube with two differentiated structures, head and foot. Foot formation is a dynamic process and includes terminal differentiation of gastric epithelial cells into mucous secreting basal disc cells. A well-established marker for this highly specialized cell type is a locally expressed peroxidase (Hoffmeister et al. 1985). Based on the foot-specific peroxidase activity, the gene PPOD1 has been identified (Hoffmeister-Ullerich et al. 2002). Unexpectedly, this approach led to the identification of a second gene, PPOD2, with high sequence similarity to PPOD1 but a strikingly different expression pattern. Here, we characterize PPOD2 in more detail and show that both genes, PPOD1 and PPOD2, are members of a gene family with differential complexity and expression patterns in different Hydra species. At the genomic level, differences in gene number and structure within the PPOD gene family, even among closely related species, support a recently proposed phylogeny of the genus Hydra and point to unexpected genomic plasticity within closely related species of this ancient metazoan taxon. Electronic supplementary material Supplementary material is available in the online version of this article at  相似文献   

7.
Stutte GW  Monje O  Hatfield RD  Paul AL  Ferl RJ  Simone CG 《Planta》2006,224(5):1038-1049
The use of higher plants as the basis for a biological life support system that regenerates the atmosphere, purifies water, and produces food has been proposed for long duration space missions. The objective of these experiments was to determine what effects microgravity (μg) had on chloroplast development, carbohydrate metabolism and gene expression in developing leaves of Triticum aestivum L. cv. USU Apogee. Gravity naive wheat plants were sampled from a series of seven 21-day experiments conducted during Increment IV of the International Space Station. These samples were fixed in either 3% glutaraldehyde or RNAlater or frozen at −25°C for subsequent analysis. In addition, leaf samples were collected from 24- and 14-day-old plants during the mission that were returned to Earth for analysis. Plants grown under identical light, temperature, relative humidity, photoperiod, CO2, and planting density were used as ground controls. At the morphological level, there was little difference in the development of cells of wheat under μg conditions. Leaves developed in μg have thinner cross-sectional area than the 1 g grown plants. Ultrastructurally, the chloroplasts of μg grown plants were more ovoid than those developed at 1 g, and the thylakoid membranes had a trend to greater packing density. No differences were observed in the starch, soluble sugar, or lignin content of the leaves grown in μg or 1 g conditions. Furthermore, no differences in gene expression were detected leaf samples collected at μg from 24-day-old leaves, suggesting that the spaceflight environment had minimal impact on wheat metabolism.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

8.
Qi Y  Sun Y  Xu L  Xu Y  Huang H 《Planta》2004,219(2):270-276
In seed plants, formation of the adaxial–abaxial polarity is of primary importance in leaf patterning. Since Arabidopsis thaliana (L.) Heynh. genes ASYMMETRIC LEAVES1 (AS1) and ASYMMETRIC LEAVES2 (AS2) are key regulators in specifying adaxial leaf identity, and ERECTA is involved in the AS1/AS2 pathway for regulating adaxial–abaxial polarity [L. Xu et al. (2003) Development 130:4097–4107], we studied the physiological functions of the ERECTA protein in plant development. We analyzed the effects of different environmental conditions on a special leaf structure in the as1 and as2 mutants. This structure, called the lotus-leaf, reflects a severe loss of adaxial–abaxial polarity in leaves. Higher concentrations of salt or other osmotic substance and lower temperature severely affected plant growth both in the wild type and the mutants, but did not affect lotus-leaf frequency in the as1 and as2 mutants. as1 and as2 mutants exhibited a very low lotus-leaf frequency at 22°C, a temperature that favors Arabidopsis growth. The lotus-leaf frequency rose significantly with an increase in growth temperature, and only in plants that are in the erecta mutation background. These results suggest that ERECTA function is required for reducing plant sensitivity to heat stress during adaxial–abaxial polarity formation in leaves.Abbreviations AS1, AS2 ASYMMETRIC LEAVES1, 2 - ER ERECTA  相似文献   

9.
The objectives of this study were to test the feasibility of introducing barley hva1 gene, a LEA3 member, into perennial grass species using the Agrobacterium-mediated transformation technique and to determine whether heterologous expression of hva1 would alleviate water-deficit injury in grass species. Creeping bentgrass (Agrostis stolonifera var. palustris), a drought-intolerant grass species, was transformed transiently or stably using three different promoters in conjunction with the downstream report/target genes. Two abscisic acid (ABA)-inducible promoters, ABA1 and ABA2 derived from ABA-response complex (ABRC3) were used to examine stress-responsive expression of the green fluorescent protein (GFP). Transient expression of GFP demonstrated the inducibility of ABA1 and ABA2 promoters in response to exogenous ABA application. The ABA2 promoter was further studied for stress-responsive expression of hva1 and a maize Ubi-1 promoter was tested for constitutive expression of the gene. In the T0 generation, the Ubi-1::hva1 transformants displayed variable expression levels of HVA1 protein under normal growth conditions. The hva1 gene in the ABA2::hva1 transformants maintained low expression under well-watered conditions, but was upregulated under water-deficit conditions. The tolerance to water deficit of T0 transgenic lines was assessed by measuring leaf relative water content and visually rating the severity of leaf wilting during to water stress. Under water-stressed conditions, some transgenic lines maintained high water content in leaves and showed significantly less extent of leaf wilting compared with non-transgenic control plants. These results indicated that the introduction of barley hva1 gene using constitutive or stress-inducible promoters lessened water-deficit injury in creeping bentgrass, suggesting that heterologous expression of LEA3 protein genes may enhance the survival ability of creeping bentgrass in water limiting environments.  相似文献   

10.
11.
12.
The hypersensitive response (HR) is one of the most-efficient forms of plant defense against biotrophic pathogens, and results in localized cell death and the formation of necrotic lesions; however, the molecular components of pathways leading to HR remain largely unknown. Barley (Hordeum vulgare ssp. vulgare L.) cDNAs for putative hypersensitive-induced reaction (HIR) genes were isolated based on DNA and amino-acid homologies to maize HIR genes. Analyses of the cDNA and genomic sequences and genetic mapping found four distinct barley HIR genes, Hv-hir1, Hv-hir2, Hv-hir3 and Hv-hir4, on chromosomes 4(4H) bin10, 7(5H) bin04, 7(5H) bin07 and 1(7H) bin03, respectively. Hv-hir1, Hv-hir2 and Hv-hir3 genes were highly homologous at both DNA and the deduced amino-acid level, but the Hv-hir4 gene was similar to the other genes only at the amino-acid sequence level. Amino-acid sequence analyses of the barley HIR proteins indicated the presence of the SPFH protein-domain characteristic for the prohibitins and stomatins which are involved in control of the cell cycle and ion channels, as well as in other membrane-associated proteins from bacteria, plants and animals. HIR genes were expressed in all organs and developement stages analyzed, indicating a vital and non-redundant function. Barley fast-neutron mutants exhibiting spontaneous HR (disease lesion mimic mutants) showed up to a 35-fold increase in Hv-hir3 expression, implicating HIR genes in the induction of HR.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. Wenzel  相似文献   

13.
14.
编码苯基香豆满苄基醚还原酶(phenylcoumaran benzylic ether reductase,PCBER)的基因PCBER属于PIP亚家族,是苯丙烷代谢途径中参与木脂素合成的关键基因。该研究构建了棉花GhPCBER基因的植物过表达载体并转化拟南芥,同时构建了VIGS(virus induced gene silencing,病毒诱导的基因沉默)载体转化棉花,采用实时荧光定量PCR技术对GhPCBER基因在不同组织中的表达进行分析;对野生型和转基因植株茎叶组织中的木质素和木脂素含量进行测定分析。结果表明:(1)成功构建了GhPCBER植物过表达载体pGWB17-GhPCBRE以及基因沉默重组载体pTRV2-GhPCBER;经遗传转化获得6株转棉花GhPCBER基因抗性拟南芥植株,同时获得15株GhPCBER基因沉默棉花植株(5株为一组)。(2)PCR检测表明,6株转基因拟南芥均为过表达株系,其中株系1、2、3相对表达量更高,且在茎、叶组织中的表达量分别较野生型提高了7~14倍和6~16倍,表明GhPCBER基因成功在拟南芥中过表达;GhPCBER基因沉默棉花植株的茎、叶组织中的表达量分别比野生型棉株约下降12%和26%,表明烟草脆裂病毒(TRV)体系(pTRV2-GhPCBER)成功抑制了GhPCBER基因的表达。(3)转GhPCBER基因拟南芥茎、叶中木质素和木脂素含量较野生型均显著降低;GhPCBER基因沉默棉花植株茎、叶中木质素和木脂素含量较野生型均极显著降低;组织化学染色观察发现GhPCBER基因沉默棉花植株茎秆颜色明显比野生型染色浅,也证明沉默基因棉花植株茎秆中的木质素含量减少。(4)苯丙烷代谢通路中8个相关基因的实时荧光定量PCR分析发现,过表达或抑制GhPCBRE基因均会导致苯丙烷代谢途径发生重新定向。  相似文献   

15.
The leaf is a coordinated mosaic of developmental domains, which are evident from leaf inception on the flanks of the apical meristem. The subdivision of the meristem into molecularly defined domains is regulated by the interactions of a number of gene products and by receptor kinase-mediated signals. The acquisition of symmetry axes in the emerging leaf is a process coordinated by hormones (such as auxin and cytokinins) and the expression of classes of genes (such as the knox and the ARP, as1/rs2/phan, genes). As with simple leaves, the architecture of compound leaves is defined by spatial/temporal gradients of regulatory gene functions: complexity results from the interplay between leaf differentiation processes and genes maintaining a partial level of indeterminacy in the developing primordium. Boundaries between regions with different molecular 'addresses' are considered, in plants as in Drosophila, as organizing centres for lateral organ development.  相似文献   

16.
Atienza SG  Jafary H  Niks RE 《Planta》2004,220(1):71-79
Nonhost resistance is the most common type of resistance in plants. Understanding the factors that make plants susceptible or resistant may help to achieve durably effective resistance in crop plants. Screening of 109 barley (Hordeum vulgare L.) accessions in the seedling stage indicated that barley is a complete nonhost to most of the heterologous rust fungi studied, while it showed an intermediate status with respect to Puccinia triticina, P. hordei-murini, P. hordei-secalini, P. graminis f. sp. lolii and P. coronata ff. spp. avenae and holci. Accessions that were susceptible to a heterologous rust in the seedling stage were much more or completely resistant at adult plant stage. Differential interaction between barley accessions and heterologous rust fungi was found, suggesting the existence of rust-species-specific resistance. In particular, many landrace accessions from Ethiopia and Asia, and naked-seeded accessions, tended to be susceptible to several heterologous rusts, suggesting that some resistance genes in barley are effective against more than one heterologous rust fungal species. Some barley accessions had race-specific resistance against P. hordei-murini. We accumulated genes for susceptibility to P. triticina and P. hordei-murini in two genotypes called SusPtrit and SusPmur, respectively. In the seedling stage, these accessions were as susceptible as the host species to the target rusts. They also showed unusual susceptibility to other heterologous rusts. These two lines are a valuable asset to further experimental work on the genetics of resistance to heterologous rust fungi.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-004-1319-1Abbreviations ff. spp Formae speciales - RIL Recombinant inbred line - DC Double cross - DC-S Progeny produced by selfing of double-cross plants  相似文献   

17.
Hypothetical genes should play important roles in plant growth and development, although their biological functions await elucidation. One of these genes, namely At2g37610, caught our attention during the gene cloning of several salt-tolerant mutants. Promoter-GUS fusion analysis indicated a unique tissue-specific expression pattern of At2g37610 in Arabidopsis. Constitutive expression of the gene under 35S promoter caused obvious morphological changes in transgenic Arabidopsis plants, such as curled rosette leaves and bushy phenotype at maturity. Phenotypic characterization revealed that the cause of the bushy phenotype was the enhanced lateral bud outgrowth at the bottom region of the primary inflorescence, which is different from that of reported mutant plants (bushy or branched) such as max, axr1, and bus mutants. Together, these data suggest that At2g37610 is a possible novel gene related to the regulation of leaf development and shoot patterning.  相似文献   

18.
Knotted-like homeobox (knox) genes constitute a gene family in plants. Class I knox genes are expressed in shoot apical meristems, and (with notable exceptions) not in lateral organ primordia. Class II genes have more diverse expression patterns. Loss and gain of function mutations indicate that knox genes are important regulators of meristem function. Gene duplication has contributed to the evolution of families of homeodomain proteins in metazoans. We believe that similar mechanisms have contributed to the diversity of knox gene function in plants. Knox genes may have contributed to the evolution of compound leaves in tomato and could be involved in the evolution of morphological traits in other species. Alterations in cis-regulatory regions in some knox genes correlate with novel patterns of gene expression and distinctive morphologies. Preliminary data from the analysis of class I knox gene expression illustrates the evolution of complex patterns of knox expression is likely to have occurred through loss and gain of domains of gene expression.  相似文献   

19.
20.
Long-distance signals generated in shoots are thought to be associated with the regulation of iron uptake from roots; however, the signaling mechanism is still unknown. To elucidate whether the signal regulates iron uptake genes in roots positively or negatively, we analyzed the expressions of two representative iron uptake genes: NtIRT1 and NtFRO1 in tobacco (Nicotiana tabacum L.) roots, after shoots were manipulated in vitro. When iron-deficient leaves were treated with Fe(II)-EDTA, the expressions of both genes were significantly reduced; nevertheless iron concentration in the roots maintained a similar level to that in roots grown under iron-deficient conditions. Next, all leaves from tobacco plants grown under the iron-deficient condition were excised. The expression of two genes were quickly reduced below half within 2 h after the leaf excision and gradually disappeared by the end of a 24-h period. The NtIRT1 expression was compared among the plants whose leaves were cut off in various patterns. The expression increased in proportion to the dry weight of iron-deficient leaves, although no relation was observed between the gene expression and the position of excised leaves. Interestingly, the NtIRT1 expression in hairy roots increased under the iron-deficient condition, suggesting that roots also have the signaling mechanism of iron status as well as shoots. Taken together, these results indicate that the long-distance signal generated in iron-deficient tissues including roots is a major factor in positive regulation of the expression of NtIRT1 and NtFRO1 in roots, and that the strength of the signal depends on the size of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号