共查询到20条相似文献,搜索用时 8 毫秒
1.
Brian M. Cali Timothy C. Doyle David Botstein Gerald R. Fink 《Molecular biology of the cell》1998,9(7):1873-1889
Saccharomyces cerevisiae is dimorphic and switches from a yeast form to a pseudohyphal (PH) form when starved for nitrogen. PH cells are elongated, bud in a unipolar manner, and invade the agar substrate. We assessed the requirements for actin in mediating the dramatic morphogenetic events that accompany the transition to PH growth. Twelve “alanine scan” alleles of the single yeast actin gene (ACT1) were tested for effects on filamentation, unipolar budding, agar invasion, and cell elongation. Some act1 mutations affect all phenotypes, whereas others affect only one or two aspects of PH growth. Tests of intragenic complementation among specific act1 mutations support the phenotypic evidence for multiple actin functions in filamentous growth. We present evidence that interaction between actin and the actin-binding protein fimbrin is important for PH growth and suggest that association of different actin-binding proteins with actin mediates the multiple functions of actin in filamentous growth. Furthermore, characterization of cytoskeletal structure in wild type and act1/act1 mutants indicates that PH cell morphogenesis requires the maintenance of a highly polarized actin cytoskeleton. Collectively, this work demonstrates that actin plays a central role in fungal dimorphism. 相似文献
2.
Three endonuclease activities have been partially purified from Saccharomyces cerevisiae on the basis of their activity against x-irradiated closed-circular supercoiled bacteriophage PM2 DNA. These endonucleases also nick apurinic DNA and two out of the three activities incise DNA UV-irradiated with high doses. The endonuclease activities have also been distinguished on the basis of their magnesium requirement and sensitivity to EDTA. 相似文献
3.
An endonuclease cleaving depurinated and alkylated double-stranded DNA has been purified 500-fold from Saccharomyces cerevisiae, strain MB 1052. The enzyme has an Mr of 31 000 +/- 2000, a sedimentation value of 3.2S and a diffusion coefficient of 9.5 X 10-7 cm2/s. The enzyme was active only at apurinic/apyridiminic sites, regardless of whether they were produced by heating the DNA at acidic pH or by alkylation with the ultimate carcinogen methyl methanesulphonate. Native DNA was not acted upon. U.v.-irradiated DNA and DNA treated with the ultimate carcinogen N-acetoxy-2-acetylaminofluorene were cleaved to an extent related to the extent of apurinic/apyridiminic sites. Enzymic activity was not dependent upon Mg2+, but was stimulated approx. 3-fold by 4mM-Mg2+. The enzyme did not bind to DEAE-cellulose or CM-cellulose at KCl concentrations greater than 160 mM. The endonuclease was obtained free of exonuclease and 3-methyladenine-DNA glycosylase activity in five chromatographic steps. 相似文献
4.
F Sánchez-Madrid P Conde D Vázquez J P Ballesta 《Biochemical and biophysical research communications》1979,87(1):281-291
Two dimensional gel electrophoresis of ribosomal proteins from reveals the presence of three spots in the region corresponding to proteins of high acidic character. Washing the ribosomes with 0.4 M NH4Cl and 50% ethanol, followed by chromatography of the extracted proteins on DEAE-cellulose, indicated the presence of two fractions of acidic proteins; (A and Ax), having very similar molecular weights (12.000–13.000), but phosphorylated to different extents. Fractions A and Ax are immunologically distinct and their immunologic properties differ from acidic proteins found in , rat liver, and ribosomes.Protein A can be resolved into two bands by electrofocusing, and two dimensional gel electrophoresis. The two components correspond to proteins L44 and L45 according to the standard nomenclature. Proteins Ax seems to correspond to the spot that moves above and to the left of L44 and L45 and is at least three times more phosphorylated than these two proteins. 相似文献
5.
6.
The glyoxylate cycle is essential for the utilization of C2 compounds by the yeast Saccharomyces cerevisiae. Within this cycle, isocitrate lyase catalyzes one of the key reactions. We obtained mutants lacking detectable isocitrate lyase activity, screening for their inability to grow on ethanol. Genetic and biochemical analysis suggested that they carried a defect in the structural gene, ICL1. The mutants were used for the isolation of this gene and it was located on a 3.1-kb BglII-SphI DNA fragment. We then constructed a deletion-substitution mutant in the haploid yeast genome. It did not have any isocitrate lyase activity and lacked the ability to grow on ethanol as the sole carbon source. Both strands of a DNA fragment carrying the gene and its flanking regions were sequenced. An open reading frame of 1671 bp was detected, encoding a protein of 557 amino acids with a calculated molecular mass of 62515 Da. The deduced amino acid sequence shows extensive similarities to genes encoding isocitrate lyases from various organisms. Two putative cAMP-dependent protein-kinase phosphorylation sites may explain the susceptibility of the enzyme to carbon catabolite inactivation. 相似文献
7.
A Role for the Actin Cytoskeleton of Saccharomyces cerevisiae in Bipolar Bud-Site Selection 总被引:2,自引:0,他引:2 下载免费PDF全文
Saccharomyces cerevisiae cells select bud sites according to one of two predetermined patterns. MATa and MATα cells bud in an axial pattern, and MATa/α cells bud in a bipolar pattern. These budding patterns are thought to depend on the placement of spatial cues at specific sites in the cell cortex. Because cytoskeletal elements play a role in organizing the cytoplasm and establishing distinct plasma membrane domains, they are well suited for positioning bud-site selection cues. Indeed, the septin-containing neck filaments are crucial for establishing the axial budding pattern characteristic of MATa and MATα cells. In this study, we determined the budding patterns of cells carrying mutations in the actin gene or in genes encoding actin-associated proteins: MATa/α cells were defective in the bipolar budding pattern, but MATa and MATα cells still exhibit a normal axial budding pattern. We also observed that MATa/α actin cytoskeleton mutant daughter cells correctly position their first bud at the distal pole of the cell, but mother cells position their buds randomly. The actin cytoskeleton therefore functions in generation of the bipolar budding pattern and is required specifically for proper selection of bud sites in mother MATa/α cells. These observations and the results of double mutant studies support the conclusion that different rules govern bud-site selection in mother and daughter MATa/α cells. A defective bipolar budding pattern did not preclude an sla2-6 mutant from undergoing pseudohyphal growth, highlighting the central role of daughter cell bud-site selection cues in the formation of pseudohyphae. Finally, by examining the budding patterns of mad2-1 mitotic checkpoint mutants treated with benomyl to depolymerize their microtubules, we confirmed and extended previous evidence indicating that microtubules do not function in axial or bipolar bud-site selection. 相似文献
8.
The "killer" plasmid and a larger double-stranded RNA plasmid of yeast exist in intracellular virion particles. Purification of these particles from a diploid killer strain of yeast (grown into stationary growth on ethanol) resulted in co-purification of a DNA-independent RNA polymerase activity. This activity incorporates and requires all four ribonucleoside triphosphates and will not act on deoxyribonucleoside triphosphates. The reaction requires magnesium, is inhibited by sulfhydryl-oxidizing reagents and high concentrations of monovalent cation, but is insensitive to DNase, alpha-amanitin, and actinomycin D. Pyrophosphate inhibits the reaction as does ethidium bromide. Exogenous nucleic acids have no effect on the reaction. The product is mostly single-stranded RNA, some of which is released from the enzymatically active virions. 相似文献
9.
Ribonucleotide reductase from Saccharomyces cerevisiae 总被引:3,自引:0,他引:3
E Vitols V A Bauer E C Stanbrough 《Biochemical and biophysical research communications》1970,41(1):71-77
10.
11.
A glucokinase from Saccharomyces cerevisiae 总被引:9,自引:0,他引:9
P K Maitra 《The Journal of biological chemistry》1970,245(9):2423-2431
12.
RNA-dependent ATPase from Saccharomyces cerevisiae 总被引:2,自引:0,他引:2
A new RNA-dependent ATPase has been isolated from yeast chromatin extracts and partially characterized. The protein has a sedimentation coefficient of about 7 S. The enzyme hydrolyzes specifically ATP (or dATP) to ADP (or dADP) and Pi in the presence of Mg2+ or Mn2+ ions and requires a single-stranded polynucleotide as cofactor. The order of efficiency of synthetic polymers is poly(rU) > poly(rI) greater than or equal to poly(dU) > poly(rA) greater than or equal to poly(rC). Among natural polymers, single-stranded DNA and poly(rA)-containing mRNA from yeast are also active but less so than poly(rU). The enzyme exhibits a pH optimum of 8 and is fully inhibited by 0.25 M NaCl. The Km for ATP is0.2 mM. The resemblance between this ATPase and DNA-dependent ATPases from other sources, as well as the termination factor rho, is discussed. 相似文献
13.
Y Looze L Gillet M Deconinck B Couteaux E Polastro J Leonis 《International journal of peptide and protein research》1979,13(3):253-259
Protease B has been isolated from Saccharomyces cerevisiae and purified in six steps as follows: autolysis of the yeast cells, ammonium sulfate fractionation, activation of the proteolytic enzymes, chromatography on DEAE-cellulose, chromatography on CM-cellulose and finally, a second chromatography on DEAE-cellulose. The preparation was shown to be homogeneous on polyacrylamide gels in the absence as well as in the presence of sodium dodecylsulfate. Furthermore, the molecular weight (43,000 daltons) and the isoelectric point (5.45) were in good agreement with earlier published values. The amino acid composition is reported. The absence of disulfide bonds in protease B has to be outlined. The amino acid residues of the protein have been found to be folded nearly quantitatively (at least 80%) in a beta-conformation as deduced from a circular dichroism study. Finally, the tryptophan residues (5 mol/mol protein) are largely buried in the hydrophobic core of the enzyme. 相似文献
14.
Minjung Chae Gil-Soo Han George M. Carman 《The Journal of biological chemistry》2012,287(48):40186-40196
Phosphatidate phosphatase (PAP) catalyzes the dephosphorylation of phosphatidate to yield diacylglycerol. In the yeast Saccharomyces cerevisiae, PAP is encoded by PAH1, DPP1, and LPP1. The presence of PAP activity in the pah1Δ dpp1Δ lpp1Δ triple mutant indicated another gene(s) encoding the enzyme. We purified PAP from the pah1Δ dpp1Δ lpp1Δ triple mutant by salt extraction of mitochondria followed by chromatography with DE52, Affi-Gel Blue, phenyl-Sepharose, MonoQ, and Superdex 200. Liquid chromatography/tandem mass spectrometry analysis of a PAP-enriched sample revealed multiple putative phosphatases. By analysis of PAP activity in mutants lacking each of the proteins, we found that APP1, a gene whose molecular function has been unknown, confers ∼30% PAP activity of wild type cells. The overexpression of APP1 in the pah1Δ dpp1Δ lpp1Δ mutant exhibited a 10-fold increase in PAP activity. The PAP activity shown by App1p heterologously expressed in Escherichia coli confirmed that APP1 is the structural gene for the enzyme. Introduction of the app1Δ mutation into the pah1Δ dpp1Δ lpp1Δ triple mutant resulted in a complete loss of PAP activity, indicating that distinct PAP enzymes in S. cerevisiae are encoded by APP1, PAH1, DPP1, and LPP1. Lipid analysis of cells lacking the PAP genes, singly or in combination, showed that Pah1p is the only PAP involved in the synthesis of triacylglycerol as well as in the regulation of phospholipid synthesis. App1p, which shows interactions with endocytic proteins, may play a role in vesicular trafficking through its PAP activity. 相似文献
15.
《The Journal of cell biology》1996,135(6):1535-1549
During cell division, cytoplasmic organelles are not synthesized de novo, rather they are replicated and partitioned between daughter cells. Partitioning of the vacuole in the budding yeast Saccharomyces cerevisiae is coordinated with the cell cycle and involves a dramatic translocation of a portion of the parental organelle from the mother cell into the bud. While the molecular mechanisms that mediate this event are unknown, the vacuole''s rapid and directed movements suggest cytoskeleton involvement. To identify cytoskeletal components that function in this process, vacuole inheritance was examined in a collection of actin mutants. Six strains were identified as being defective in vacuole inheritance. Tetrad analysis verified that the defect cosegregates with the mutant actin gene. One strain with a deletion in a myosin-binding region was analyzed further. The vacuole inheritance defect in this strain appears to result from the loss of a specific actin function; the actin cytoskeleton is intact and protein targeting to the vacuole is normal. Consistent with these findings, a mutation in the actin-binding domain of Myo2p, a class V unconventional myosin, abolishes vacuole inheritance. This suggests that Myo2p serves as a molecular motor for vacuole transport along actin filaments. The location of actin and Myo2p relative to the vacuole membrane is consistent with this model. Additional studies suggest that the actin filaments used for vacuole transport are dynamic, and that profilin plays a critical role in regulating their assembly. These results present the first demonstration that specific cytoskeletal proteins function in vacuole inheritance. 相似文献
16.
Subunit structure of external invertase from Saccharomyces cerevisiae. 总被引:16,自引:0,他引:16
Because 50% of the mass of the external invertase of Saccharomyces cerevisiae consists of carbohydrate, it has been extremely difficult to obtain an accurate molecular weight of this enzyme by centrifugal or electrophoretic techniques. However, on removing almost all of the oligosaccharide chains of this enzyme with the endo-beta-N-acetyl-glucosaminidase H from Streptomyces plicatus, it has been possible to show that carbohydrate-free invertase is composed of two 60,000-dalton subunits. Terminal sequence analysis with carboxypeptidases A, B, and Y provided strong evidence that the subunits are identical. 相似文献
17.
Galactokinase (EC 2.7.1.6; ATP:D-galactose-1-phosphotransferase) was purified to homogeneity with a 50% yield from cells of Saccharomyces cerevisiae which were fully induced for the production of the galactose metabolizing enzymes. The purification was accomplished by:(a) ammonium sulfate fractionation, (b) streptomycin sulfate precipitation. (c) DEAE-cellulose chromatography, (d) hydroxylapatite chromatography, and finally (e) Bio-Gel A-0.5 m gel filtration. The resulting preparation of galactokinase was judged to be at least 95% pure by the following criteria: (a) sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (b) ultracentrifuge analysis, (c) nondissociating polyacrylamide gel electrophoresis, and (d) Bio-Gel A-0.5 m gel filtration. The purified enzyme preparation was used to determine the Km values for the two substrates, galactose and ATP, which were found to be 0.60 and 0.15 mM, respectively. Vmax was also determined and found to be 3.35 mmol/h/mg. This corresponds to a turnover rate of 3350 molecules of galactose phosphorylated/min/enzyme molecule. The effect of pH on the galactokinase-catalyzed phosphorylation of galactose was determined; the results showed the pH optimum of the reaction to be in the range of pH 8.0 to 9.0. The enzyme is highly specific for galactose since galactokinase did not appear to phosphorylate any of the other sugars tested at a rate greater than 0.5% of the rate of galactose phosphorylation. Amino acid analysis was performed on the enzyme preparation and the results were used to calculate the partial specific volume (v) of 0.736. The NH2-terminal sequence was determined for the first 3 residues. The molecular weight and subunit composition were determined by ultracentrifugation and polyacrylamide gel electrophoresis under dissociating and nondissociating conditions. The data obtained indicated that galactokinase is a monomeric protein of molecular weight 58,000. 相似文献
18.
Thiamine-binding protein was isolated from Saccharomyces cerevisiae by successive procedures of cold osmotic shock treatment, DEAE-cellulose chromatography and ultrafiltration. The purified thiamine-binding protein was an electrophoretically homogeneous molecule which appeared to be a glycoprotein with a molecular weight of 140 000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. No thiamine-binding protein was observed by disc gel electrophoresis in the shock fluid released from yeast cells grown in the presence of 1 muM thiamine, indicating that the formation of this protein is regulated by exogenous thiamine as previously suggested. 相似文献
19.
Protein-DNA interactions in soluble telosomes from Saccharomyces cerevisiae. 总被引:2,自引:0,他引:2 下载免费PDF全文
Telomeric DNA in Saccharomyces is organized into a non-nucleosomal chromatin structure called the telosome that can be released from chromosome ends in soluble form by nuclease digestion (Wright, J. H., Gottschling, D. E. and Zakian, V. A. (1992) Genes Dev. 6, 197-210). The protein-DNA interactions of soluble telosomes were investigated by monitoring isolated telomeric DNA fragments for the retention of bound protein using both gel mobility shift and nitrocellulose filter-binding assays. Telosomal proteins remained associated with telomeric DNA at concentrations of ethidium bromide that dissociated nucleosomes. The protein-DNA interactions in the yeast telosome were also disrupted by much lower salt concentrations than those known to disrupt either the interactions of ciliate terminus-binding proteins with telomeric DNA or the interactions of histones with DNA in nucleosomes. Taken together, these data corroborate previously published nuclease mapping data indicating that telosomes are distinct in structure from conventional nucleosomes. These data also indicate that yeast do not possess telomere binding proteins similar to those detected in ciliates that remain tightly bound to telomeric DNA even in high salt. In addition, the characteristic gel mobility shift of soluble telosomes could be mimicked by complexes formed in vitro with yeast telomeric DNA and recombinant Rap1p suggesting that Rap1p, a known component of soluble yeast telosomes (Wright, J. H., Gottschling, D. E. and Zakian, V. A. (1992) Genes Dev. 6, 197-210; Conrad, M. N., Wright, J. H., Wolf, A. J. and Zakian, V. A. (1990) Cell 63, 739-750), is likely to be the major structural protein bound directly to yeast telomeric DNA. 相似文献
20.