首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their community structure is needed. Therefore, 16S rRNA gene-targeted primers specific for this genus were designed and evaluated. These primers were used in PCR in combination with a reverse primer that binds to the tRNA(Ala) gene, which is located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS). PCR products that were of different lengths were obtained due to the length heterogeneity of the IGS of different Methylobacterium species. This length variation allowed generation of fingerprints of Methylobacterium communities in environmental samples by automated ribosomal intergenic spacer analysis. The Methylobacterium communities on leaves of different plant species in a natural field were compared using this method. The new method allows rapid comparisons of Methylobacterium communities and is thus a useful tool to study Methylobacterium communities in different ecosystems.  相似文献   

2.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNA(Ala) and tRNA(Ile), which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

3.
Most species of the diazotrophic Proteobacteria Azoarcus spp. occur in association with grass roots, while A. tolulyticus and A. evansii are soil bacteria not associated with a plant host. To facilitate species identification and strain comparison, we developed a protocol for PCR-generated genomic fingerprints, using an automated sequencer for fragment analysis. Commonly used primers targeted to REP (repetitive extragenic palindromic) and ERIC (enterobacterial repetitive intergenic consensus) sequence elements failed to amplify fragments from the two species tested. In contrast, the BOX-PCR assay (targeted to repetitive intergenic sequence elements of Streptococcus) yielded species-specific genomic fingerprints with some strain-specific differences. PCR profiles of an additional PCR assay using primers targeted to tRNA genes (tDNA-PCR, for tRNA(IIe)) were more discriminative, allowing differentiation at species-specific (for two species) or infraspecies-specific level. Our protocol of several consecutive PCR assays consisted of 16S ribosomal DNA (rDNA)-targeted, genus-specific PCR followed by BOX- and tDNA-PCR; it enabled us to assign new diazotrophic isolates originating from fungal resting stages (sclerotia) to known species of Azoarcus. The assignment was confirmed by phylogenetic analysis of 16S rDNA sequences. Additionally, the phylogenetic distances and the lack of monophyly suggested emendment of the genus Azoarcus: the unnamed species Azoarcus groups C and D and a new group (E) of Azoarcus, which was detected in association with fungi, are likely to have the taxonomic rank of three different genera. According to its small subunit rRNA, the sclerotium-forming basidiomycete was related to the Ustilagomycetes, facultatively biotrophic parasites of plants. Since they occurred in a field which was under cultivation with rice and wheat, these fungi might serve as a niche for survival for Azoarcus in the soil and as a source for reinfection of plants.  相似文献   

4.
tDNA intergenic spacer PCR (tDNA-PCR) using consensus primers complementary to the conserved edges of the tRNA genes can amplify the intergenic spacers. Separation of the PCR products with capillary electrophoresis enables discrimination between fragments differing only one basepair in length. This method was applied to a collection of 82 Lactobacillus strains belonging to 37 species in order to evaluate the discriminatory power of this technique within this genus. Twenty-one species could be distinguished to species level on the basis of a unique tDNA fingerprint pattern. The other species grouped by two (e.g. L. fermentum and L. cellobiosus) or three (L. acidophilus, L. gallinarum and L. helveticus). Inclusion of the resulting fingerprints in a numerical database containing fingerprints of numerous other Gram-positive and Gram-negative species makes the identification of unknown strains possible.  相似文献   

5.
6.
The method for DNA fingerprinting of the 16S-23S rDNA intergenic spacer region was modified to increase resolution of bacterial strains by thermal gradient gel electrophoresis (TGGE) analysis. By utilizing the high melting temperature region of the tRNA gene located in the middle of the 16S-23S rDNA intergenic spacer region as an internal clamp for TGGE, multiple melting domain problems were solved. PCR primers lacking a stretch of GC-rich sequences (GC-clamp) amplified the intergenic spacer region more efficiently than GC-clamped primers. Therefore, PCR artifacts were avoided by using low, 17-cycle, PCR. The method was successfully applied to diverse bacterial species for strain differentiation by TGGE without requiring a special PCR primer set.  相似文献   

7.
The aim of this study was to design species-specific PCR assays for rapid and reliable identification and differentiation of Staphylococcus (S.) carnosus and S. simulans strains. Two different sets of primers, targeting the manganese-dependent superoxide dismutase (sodA) gene of S. carnosus and S. simulans, respectively, were designed. Species-specificity of both sets of primers was evaluated by using 93 strains, representing 26 different species of the genus Staphylococcus, 3 species of the genus Kocuria (K.), 1 species of the genus Micrococcus (Mic.) and 1 species of the genus Macrococcus (Mac.) as reference. By using primers simF and simR the expected PCR fragment was obtained only when purified DNA from S. simulans strains was used. Amplification performed by using primers carF and carR produced a PCR fragment of the expected length, when DNA from strains of S. carnosus and S. condimenti were used as template. Nevertheless, DraI digestion of the carF/carR PCR fragment allowed a clear differentiation of strains of these two species. Species-specific PCR assays designed during this study, overcoming many of the limitations of the traditional identification procedures, can be considered a valid strategy for detection and identification of S. carnosus and S. simulans strains. The rapidity (about 4h from DNA isolation to results), the reliability and low cost of the PCR procedures established suggests that the methods may be profitably applied for specific detection and identification of S. carnosus, S. condimenti and S. simulans strains in starter cultures and meat products.  相似文献   

8.
Rapid and reliable identification of Staphylococcus xylosus was achieved by species-specific PCR assays. Two sets of primers, targeting on xylulokinase (xylB) and 60 kDa heat-shock protein (hsp60) genes of S. xylosus, respectively, were designed. Species-specificity of both sets of primers was evaluated by using 27 reference strains of the DSM collection, representing 23 different species of the Staphylococcus genus and 3 species of the Kocuria genus. Moreover, 90 wild strains isolated from different fermented dry sausages were included in the analysis. By using primers xylB-F and xylB-R the expected PCR fragment was obtained only when DNA from S. xylosus was used. By contrast, amplification performed by using primers xylHs-F and xylHs-R produced a single PCR fragment, of the expected length, when DNA from S. xylosus, S. haemolyticus, S. intermedius and S. kloosii were used as template. Nevertheless, AluI digestion of the xylHs-F/xylHs-R PCR fragment allowed a clear differentiation of these 4 species. The rapidity (about 4 h from DNA isolation to results) and reliability of the PCR procedures established suggests that the method may be profitably applied for specific detection and identification of S. xylosus strains.  相似文献   

9.
根据细菌的16SrDNA3’端和23SrDNA5’端的高度保守区设计引物,PCR扩增了2株创伤弧菌(Vibrio vulnificus)的16S-23SrDNA间区(Intergenic spacer,IGS),克隆到pGEM-T载体上,测序。用BLAST和DNA star软件对16S-23SrDNA间区序列及其内的tRNA基因进行比较分析。结果表明,2株创伤弧菌共测出9条16S-23SrDNA间区序列,其中ZSU006测出5条,间区类型分别为:IGS^GLAV、IGS^GLV、IGS^LA、IGS^A和IGS^G.其中IGS^GLAv最大,包含tRNA^Glu、tRNA^Lys、tRNA^Ala。和tRNA^Val基因;IGS^GLV包含tRNA^Glu、tRNA^Lys。和tRNA^Val基因;IGS^LA,则包含tRNA^Ile和tRNA^Ala基因;IGS^G包含tRNA^Glu基因;而IGS^A仅包含tRNA^Ala基因。菌株CG021测出的16S-23SrDNA IGS序列有4条,除缺少IGS^A外,其余的IGS类型均与ZSU006的相同。与GenBank内的创伤弧菌ATCC27562的IGS序列比较,发现创伤弧菌所有类型的IGS的tRNA基因两端的非编码区具有较高的种内同源性。16S-23SrDNA间区结构的差异为建立一种新的创伤弧菌检测方法奠定了基础。  相似文献   

10.
Staphylococcus haemolyticus is the most frequently coagulase-negative Staphylococcus species associated with antimicrobial resistance isolated from nosocomial infections. We developed an accurate and simple multiplex PCR assay to identify methicillin-resistant S. haemolyticus (MRSH) isolates. We designed species-specific primers of the mvaA gene that encodes a 3-hydroxy-3-methylglutaryl coenzyme A involved in the mevalonate pathway of the microorganism. Simultaneously, mecA gene primers of methicillin resistance were also used. The PCR assay was established using 16 strains of different reference Staphylococcus species and validated with a collection of 147 clinical staphylococcal isolates that were also phenotypically characterized. Reliable results for the detection of MRSH isolates were obtained for 100% of the strains evaluated, showing that this PCR assay can be used for the routine microbiology laboratories. This is the first report using species-specific multiplex PCR to detect a single segment of S. haemolyticus associated with a segment of mecA gene.  相似文献   

11.
A fast and reliable Multiplex-PCR assay was established to identify the species Lactobacillus johnsonii. Two opposing rRNA gene-targeted primers have been designed for this specific PCR detection. Specificity was verified with DNA samples isolated from different lactic acid bacteria. Out of 47 Lactobacillus strains isolated from different environments, 16 were identified as L. johnsonii by PCR. The same set of strains was investigated with five alternative molecular typing methods: enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), repetitive extragenic palindromic PCR (REP-PCR), amplified fragment length polymorphism, single triplicate arbitrarily primed PCR, and pulsed-field gel electrophoresis in order to compare the discriminatory power of these methods. The reported data strongly support the highly significant heterogeneity among all L. johnsonii isolates, potentially linked to their origin of isolation. The use of species-specific primers as well as rapid and highly powerful PCR-based molecular typing tools (namely ERIC- and REP-PCR techniques) should be respectively envisaged for identifying, differentiating and monitoring L. johnsonii strains from various environmental samples, for product monitoring, for species tracing in clinical studies as well as bacterial profiling of various microecological or gastrointestinal environments.  相似文献   

12.
A nonradiometric method has been developed for distinguishing between the sibling species Anopheles gambiae Giles and An. arabiensis Patton, two important Afrotropical vectors of malaria. DNA fragments of species diagnostic length are amplified by polymerase chain reaction (PCR) from a small amount of unknown DNA and three different PCR primers. All three PCR primers are based on ribosomal DNA (rDNA) sequences. A universal plus-strand primer (A0) is derived from a conserved region at the 3' end of the 28S rDNA coding region. Two species-specific minus-strand primers (Aa0.5 and Ag1.3) are derived from sequences in the intergenic spacers. The Ag1.3 sequence is approximately 1.3 kb downstream of A0; the Aa0.5 sequence is about 0.5 kb downstream of A0. When mosquito DNA is amplified in the presence of all three primers, a 1.3 kb fragment is produced if An. gambiae DNA is used as template, and a 0.5 kb fragment is produced if An. arabiensis DNA is used. Amplification of DNA from An.gambiae/An. arabiensis hybrids produces both the 1.3 kb and the 0.5 kb fragments. Neither diagnostic fragment is produced when DNA from other species in the An. gambiae complex is used as template.  相似文献   

13.
Intergenic conversion is a mechanism for the concerted evolution of repeated DNA sequences. A new approach for the isolation of intergenic convertants of serine tRNA genes in the yeast Schizosaccharomyces pombe is described. Contrary to a previous scheme, the intergenic conversion events studied in this case need not result in functional tRNA genes. The procedure utilizes crosses of strains that are homozygous for an active UGA suppressor tRNA gene, and the resulting progeny spores are screened for loss of suppressor activity. In this way, intergenic convertants of a tRNA gene are identified that inherit varying stretches of DNA sequence from either of two other tRNA genes. The information transferred between genes includes anticodon and intron sequences. Two of the three tRNA genes involved in these information transfers are located on different chromosomes. The results indicate that intergenic conversion is a conservative process. No infidelity is observed in the nucleotide sequence transfers. This provides further evidence for the hypothesis that intergenic conversion and allelic conversion are the result of the same molecular mechanism. The screening procedure for intergenic revertants also yields spontaneous mutations that inactivate the suppressor tRNA gene. Point mutations and insertions of A occur at various sites at low frequency. In contrast, A insertions at one specific site occur with high frequency in each of the three tRNA genes. This new type of mutation hot spot is found also in vegetative cells.  相似文献   

14.
AIMS: In this study, novel insertion element (IE) DNA targeted polymerase chain reaction (PCR) primers were designed and further used for the specific detection of Salmonella enteritidis in foods and faecal samples. METHODS AND RESULTS: Polymerase chain reaction primers, based upon their IE gene sequence (accession number Z83734), were developed for the detection of Salm. enteritidis. These primers were termed IE1L-IE1R and IE2L-IE3R. The cell lysate, rather than the extracted DNA, was used as template and preculturing of bacterial material was carried out prior to the PCR assay. The specificities of these developed primers were to be confirmed further. The PCR procedure developed was used to examine 170 endogenously contaminated samples, including poultry, seafood, meats, faecal specimens and some feed samples. Salmonella enteritidis was detected in 5.29% (nine of 170) of the samples. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Two sets of novel PCR primers, based upon their IE gene sequence, have been developed. These primers demonstrated the ability to be used for the specific detection of Salm. enteritidis. When PCR primers IE1L-IE1R were used for the detection of artificially Salm. enteritidis-contaminated food samples, as few as 1 cell ml(-1) sample could be detected using this PCR process.  相似文献   

15.
AIMS: The organization of ribosomal RNA (rrn) operons in Lactobacillus sanfranciscensis was studied in order to establish an easy-to-perform method for identification of L. sanfranciscensis strains, based on the length and sequence polymorphism of the 16S-23S rDNA intergenic spacer region (ISR). METHODS AND RESULTS: PCR amplification of the 16S-23S rDNA ISRs of L. sanfranciscensis gave three products distinguishing this micro-organism from the remaining Lactobacillus species. Sequence analysis revealed that two of the rrn operons were organized as in previously reported lactobacilli: large spacer (L-ISR), containing tRNA(Ile) and tRNA(Ala) genes; small spacer (S-ISR) without tRNA genes. The third described spacer (medium, M-ISR), original for L. sanfranciscensis, harboured a tRNA-like structure. An oligonucleotide sequence targeting the variable region between tDNA(Ile) and tDNA(Ala) of L. sanfranciscensis L-ISR was approved to be suitable in species-specific identification procedure. Analysis by pulse-field gel electrophoresis of the chromosomal digest with the enzyme I-CeuI showed the presence of seven rrn clusters. Lactobacillus sanfranciscensis genome size was estimated at c. 1.3 Mb. CONCLUSIONS: Direct amplification of 16S-23S ISRs or PCR with specific primer derived from L-ISR showed to be useful for specific typing of L. sanfranciscensis. This was due to the specific rrn operon organization of L. sanfranciscensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have reported a rapid procedure for L. sanfranciscensis identification based on specific structures found in its rrn operon.  相似文献   

16.
To explore the bacterial microbiota in Chilean oyster (Tiostrea chilensis), a molecular approach that permits detection of different bacteria, independently of their capacity to grow in culture media, was used. Bacterial diversity was assessed by analysis of both the 16S rDNA and the 16S-23S intergenic region, obtained by PCR amplifications of DNA extracted from depurated oysters. RFLP of the PCR amplified 16S rDNA showed a prevailing pattern in most of the individuals analyzed, indicating that a few bacterial species were relatively abundant and common in oysters. Cloning and sequencing of the 16S rDNA with the prevailing RFLP pattern indicated that this rRNA was most closely related to Arcobacter spp. However, analysis by the size of the amplified 16S-23S rRNA intergenic regions revealed not Arcobacter spp. but Staphylococcus spp. related bacteria as a major and common component in oyster. These different results may be caused by the absence of target for one of the primers employed for amplification of the intergenic region. Neither of the two bacteria species found in large abundance was recovered after culturing under aerobic, anaerobic, or microaerophilic conditions. This result, however, is expected because the number of bacteria recovered after cultivation was less than 0.01% of the total. All together, these observations suggest that Arcobacter-related strains are probably abundant and common in the Chilean oyster bacterial microbiota.  相似文献   

17.
A specific and rapid PCR detection method for Flavobacterium columnare based on the 16S-23S rDNA intergenic spacer region (ISR) of the ribosomal RNA operon has been developed. The ISR of 30 F. columnare strains and other Flavobacterium species was amplified using universal primers and sequenced. Once F. columnare specific sequences within the ISR were recognized, specific PCR primers were designed against them (FCISRFL and FCISRR1). The primers were sensitive and able to detect as low as 7 colony forming units from pure culture by PCR. The new PCR detection method was applied to experimentally infected channel catfish. Two different experiments in which channel catfish fingerlings were infected by intramuscular injection or by immersion bath showed the advantage of the PCR method over standard culture techniques. F. columnare was detected by PCR in both tank water and catfish tissue samples with a higher frequency and in less time than standard microbiological methods. Furthermore, PCR detection confirmed that F. columnare can be transmitted horizontally indirectly through the water column without fish-to-fish contact. The newly developed PCR detection method for F. columnare was more sensitive and rapid than standard culture on bacteriological media for detection of F. columnare in channel catfish tissues and in tank water.  相似文献   

18.
AIMS: To establish the specific DNA patterns in 16S rDNA and 16S-23S rDNA intergenic spacer (IGS) regions from different kinds of Serratia marcescens strains using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequences analysis. METHODS AND RESULTS: Two pairs of primers based on the 16S rDNA and 16S-23S rDNA IGS were applied to amplify the rrn operons of two kinds of S. marcescens strains. About 1500 bp for 16S rDNA and four fragments of different sizes for 16S-23S rDNA IGS were obtained. PCR-amplified fragments were analysed by RFLP and sequence analysis. Two distinct restriction patterns revealing three to five bands between two kinds of strains were detected with each specific enzyme. According to the sequence analysis, two kinds of strains showed approximately 97% sequence homology of 16S rDNA. However, there was much difference in the sequences of IGS between the two kinds of strains. Intercistronic tRNA of strains H3010 and A3 demonstrated an order of tRNA of 5'-16S-tRNA(Ala)-tRNA(Ile)-23S-3', but strain B17 harboured the tRNA of 5'-16S-tRNA(Glu)-tRNA(Ile)-23S-3'. CONCLUSIONS: The method was specific, sensitive and accurate, providing a new technique for differentiating different strains from the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper provided the first molecular characterization of 16S rDNA and 16S-23S rDNA IGS from S. marcescens strains.  相似文献   

19.
A genome comparison method was used to identify specific target sequences for the polymerase chain reaction (PCR) detection of Vibrio parahaemolyticus, and the CDS value of this bacterium was compared with that of 139 other bacterial genomes. It was found that 20 CDS of V. parahaemolyticus were relatively specific according to their E value in BLAST (a new tool for comparing protein and nucleotide sequences), and four of them were selected for the design of PCR primers. There were positive amplification products of these four pairs of primers from nine V. parahaemolyticus strains, whereas there were no amplification products from nine other Vibrionaceae strains and four non -Vibrionaceae strains. An evaluation of detection sensitivities revealed that these four pairs of primers can be used in a PCR assay for the detection of V. parahaemolyticus.

PRACTICAL APPLICATIONS


An automatic BLAST method was developed in this study, by which species-specific sequences can be screened out rapidly. In this way, new and specific genes of Vibrio parahaemolyticus were identified to be used as target sequences for PCR detection. In terms of acceptable specificity and sensitivity, the four pairs of primers were selected by screening, which can be applied in PCR assays and other molecular methods. These kinds of methods might become commercial detection products in the new future. In addition, this method for searching specific DNA sequences can also be used for the mining specific sequences in other genus and species, such as Salmonella , Staphylococcus , etc.  相似文献   

20.
The genus Carnobacterium is currently divided into the following eight species: Carnobacterium piscicola, C. divergens, C. gallinarum, C. mobile, C. funditum, C. alterfunditum, C. inhibens, and C. viridans. An identification tool for the rapid differentiation of these eight Carnobacterium species was developed, based on the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR). PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of this 16S-23S rDNA ISR was performed in order to obtain restriction profiles for all of the species. Three PCR amplicons, which were designated small ISR (S-ISR), medium ISR (M-ISR), and large ISR (L-ISR), were obtained for all Carnobacterium species. The L-ISR sequence revealed the presence of two tRNA genes, tRNAAla and tRNAIle, which were separated by a spacer region that varied from 24 to 38 bp long. This region was variable among the species, allowing the design of species-specific primers. These primers were tested and proved to be species specific. The identification method based on the 16S-23S rDNA ISR, using PCR-RFLP and specific primers, is very suitable for the rapid low-cost identification and discrimination of all of the Carnobacterium species from other phylogenetically related lactic acid bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号