首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of two levels of caffeine ingestion (5 mg.kg-1, CAF1, and 10 mg.kg-1, CAF2) on postexercise oxygen consumption was investigated in six untrained women aged 20.5 (SEM 0.5) years. After a test to determine maximal oxygen consumption (VO2max) each subject underwent three test sessions at 55% VO2max either in a control condition (CON) or with the CAF1 or CAF2 dose of caffeine. During exercise, oxygen consumption was found to be significantly higher in the CAF1 and CAF2 trials, compared to CON (P < 0.05). During the hour postexercise, oxygen consumption in CAF1 and CAF2 remained significantly higher than in CON (P < 0.05). At all times throughout the exercise, free fatty acid (FFA) concentrations were significantly higher in the caffeine trials than in CON. The FFA concentrations 1 h postexercise (+60 min) were further elevated above resting values for all three trials. Caffeine ingestion caused the greatest elevation above resting levels being 1.89 (SEM 0.19) mmol.l-1 and 1.96 (SEM 0.22) mmol.l-1 for the CAF1 and CAF2 trials, respectively. This was significantly higher (P < 0.0001) than the CON level which was 0.97 (SEM 0.19) mmol.l-1. Respiratory exchange ratio (R) values became significantly lower (P < 0.05) in CAF1 and CAF2 compared to CON at the onset of exercise and continued to decrease during the activity. Throughout the recovery period, R values were significantly lower for both caffeine trials compared to CON. The results of this study would suggest that caffeine is useful in significantly increasing metabolic rate above normal levels in untrained women during, as well as after, exercising at 55% VO2max.  相似文献   

2.
The purpose of this study was to examine the resting and exercise response patterns of plasma Peptide F immunoreactivity (ir) to altitude exposure (4300 m) and caffeine ingestion (4 mg.kg b.w.-1). Nine healthy male subjects performed exercise tests to exhaustion (80-85% VO2max) at sea level (50 m), during an acute altitude exposure (1 hr, hypobaric chamber, 4300 m) and after a chronic (17-day sojourn, 4300 m) altitude exposure. Using a randomized, double-blind/placebo experimental design, a placebo or caffeine drink was ingested 1 hour prior to exercise. Exercise (without caffeine) significantly (p less than 0.05) increased plasma Peptide F ir values during exercise at chronic altitude only. Caffeine ingestion significantly increased plasma Peptide F ir concentrations during exercise and in the postexercise period at sea level. Conversely caffeine ingestion at altitude resulted in significant reductions in the postexercise plasma Peptide F ir values. The results of this study demonstrate that the exercise and recovery response patterns of plasma Peptide F ir may be significantly altered by altitude exposure and caffeine ingestion. These data support further study examining relationships between Peptide F (and other enkephalin-containing polypeptides) and epinephrine release in response to these types of physiological stresses.  相似文献   

3.
It has been previously observed that the thermic effect of a glucose load is potentiated by prior exercise. To determine whether this phenomenon is observed when different carbohydrates are used and to ascertain the role of insulin, the thermic effects of fructose and glucose were compared during control (rest) and postexercise trials. Six male subjects ingested 100 g fructose or glucose at rest or after recovery from 45 min of treadmill exercise at 70% of maximal O2 consumption. Measurements of O2 consumption, respiratory exchange ratio, and plasma concentrations of glucose, insulin, glycerol, and lactate were measured for 3 h postingestion. Although glucose and fructose increased net energy expenditure by 44 and 51 kcal, respectively, over baseline during control trials, exercise increased the thermic effect of both carbohydrate challenges an additional 20-25 kcal (P less than 0.05). Glucose ingestion was associated with large (P less than 0.05) increases in plasma insulin concentration during control and exercise trials, in contrast to fructose ingestion. Because fructose, which is primarily metabolized by liver, and glucose elicited a similar postexercise potentiation of thermogenesis, the results indicate that the thermogenic phenomenon is not limited to skeletal muscle. These results also demonstrate that carbohydrate-induced postexercise thermogenesis is not related to an incremental increase in plasma insulin concentration.  相似文献   

4.
The effect of substrate utilization manipulated by caffeine on post-exercise oxygen consumption was investigated in five untrained females (age = 21 +/- 1.5 years), following 90 min of treadmill walking at 55% maximal oxygen consumption. Each subject participated in the two trials (control and experimental) within 2 weeks of each other. Immediately following the measurement of resting oxygen consumption, subjects consumed one of the two test beverages 60 min prior to exercise: 5 mg of caffeine per kg of body-weight in 200 ml of orange juice (CA) or 200 ml of orange juice (C). Assignment of CA and C was made in a random, double blind fashion. Immediately prior to the exercise phase (0 min) resting oxygen consumption was again measured. Following exercise, subjects returned to the same pre-exercise sitting position where respiratory data was collected over 1 h. No significant differences were found in resting oxygen consumption and respiratory exchange ratio (R) prior to caffeine ingestion (-60 min). One hour after caffeine ingestion (0 min) oxygen consumption and free fatty acid (FFA) levels increased significantly compared to C. During and 1 h following exercise, oxygen consumption and FFA levels were significantly greater, with R values being significantly lower in CA compared to C. These findings provide further evidence that metabolic substrate is somehow implicated in elevating oxygen consumption following exercise cessation.  相似文献   

5.
Recently we found that caffeine ingestion did not enhance either thermal or fat metabolic responses to resting in cold air, despite an increase in plasma epinephrine and free fatty acids. Theophylline, another methylxanthine, has been shown to be effective during exercise but not at rest during cold stress. Therefore we hypothesized that caffeine ingestion before exercise in cold air would have a thermal-metabolic impact by increasing fat metabolism and increasing oxygen consumption. Young adult men (n = 6) who did not normally have caffeine in their diet performed four double-blind trials. Thirty minutes after ingesting placebo (dextrose, 5 mg/kg) or caffeine (5 mg/kg) they either exercised (60 W) or rested for 2 h in 5 degrees C air. Cold increased (P less than 0.05) plasma norepinephrine while both caffeine and exercise increased (P less than 0.05) epinephrine. Serum free fatty acids and glycerol were increased, but there were no differences between rest and exercise or placebo and caffeine. Caffeine had no influence on either respiratory exchange ratio or oxygen consumption either at rest or during exercise. The exercise trials did not significantly warm the body, and they resulted in higher plasma norepinephrine concentrations and lower mean skin temperatures for the first 30 min. The data suggest that skin temperature stimulates plasma norepinephrine while caffeine has little effect. In contrast, caffeine and exercise stimulate plasma epinephrine while cold has minimal effect. Within the limits of this study caffeine gave no thermal or metabolic advantage during a cold stress.  相似文献   

6.
We tested the hypothesis that acute exercise would stimulate synthesis of myofibrillar protein and intramuscular collagen in women and that the phase of the menstrual cycle at which the exercise took place would influence the extent of the change. Fifteen young, healthy female subjects were studied in the follicular (FP, n=8) or the luteal phase (LP, n=7, n=1 out of phase) 24 h after an acute bout of one-legged exercise (60 min of kicking at 67% W(max)), samples being taken from the vastus lateralis in both the exercised and resting legs. Rates of synthesis of myofibrillar and muscle collagen proteins were measured by incorporation of [(13)C]leucine. Myofibrillar protein synthesis (means+/-SD; rest FP: 0.053+/-0.009%/h, LP: 0.055+/-0.013%/h) was increased at 24-h postexercise (FP: 0.131+/-0.018%/h, P<0.05, LP: 0.134+/-0.018%/h, P< 0.05) with no differences between phases. Similarly, muscle collagen synthesis (rest FP: 0.024+/- 0.017%/h, LP: 0.021+/- 0.006%/h) was elevated at 24-h postexercise (FP: 0.073+/- 0.016%/h, P<0.05, LP: 0.072+/- 0.015%/h, P<0.05), but the responses did not differ between menstrual phases. Therefore, there is no effect of menstrual cycle phase, at rest or in response to an acute bout of exercise, on myofibrillar protein synthesis and muscle collagen synthesis in women.  相似文献   

7.
The purposes of this study were to determine whether acute resistance exercise increases serum malondialdehyde (MDA) levels postexercise, and if so, whether resistance exercise training status influences the magnitude of the exercise-induced lipid peroxidation response. Twelve recreationally resistance-trained (RT) and 12 untrained (UT) men who did not have resistance exercise experience in the past year participated in this study. All subjects completed an 8-exercise circuit resistance exercise protocol consisting of 3 sets of 10 repetitions at 10 repetitions maximum for each exercise. Blood samples were obtained pre-exercise, at 5 minutes postexercise, and at 6, 24, and 48 hours postexercise. At pre-exercise, MDA (nmol.ml(-1)) averaged 3.41 +/- 0.25 (RT) and 3.20 +/- 0.25 (UT) and did not differ (p > 0.05) either between groups or over time. Creatine kinase (IU.L(-1)) was significantly (p < 0.05) elevated 5 minutes postexercise (170.6 +/- 25.8), 6 hours postexercise (290.3 +/- 34.4), 24 hours postexercise (365.5 +/- 49.9), and 48 hours postexercise (247.5 +/- 38.5) as compared with pre-exercise (126.4 +/- 20.2) for both groups. There was no difference (p > 0.05) in CK activity between groups. This study indicated that moderate-intensity whole-body resistance exercise had no effect on serum MDA concentration in RT and UT subjects.  相似文献   

8.
9.
Research has suggested that caffeine enhances aerobic performance. The evidence for high-intensity, short-term exercise, particularly resistance exercise is mixed and has not fully examined the psychological changes that occur after this mode of exercise with caffeine ingestion. This study examined the effect of caffeine (5 mg · kg(-1)) vs. placebo on bench press exercise to failure and the mood state response pre to postexercise. Thirteen moderately trained men (22.7 ± 6.0 years) completed 2 laboratory visits, after determination of 1 repetition maximum (1RM) on the bench press, where they performed bench press repetitions to failure at a load of 60% 1RM. Mood state was assessed 60 minutes pre and immediately post-substance ingestion. Borg's rating of perceived exertion (RPE) and peak blood lactate (PBla) were assessed after each test, and peak heart rate (PHR) was determined using heart rate telemetry. Participants completed significantly more repetitions to failure (p = 0.031) and lifted significantly greater weight (p = 0.027) in the caffeine condition compared to the placebo condition. The PHR (p = 0.0001) and PBla (p = 0.002) were higher after caffeine ingestion. The RPE was not different across conditions (p = 0.082). Mood state scores for vigor were greater (p = 0.001) and fatigue scores lower (p = 0.04) in the presence of caffeine. Fatigue scores were greater postexercise (p = 0.001) compared to scores pre exercise across conditions. Caffeine ingestion enhances performance in short-term, resistance exercise to failure and may favorably change the mood state response to exercise compared to a placebo.  相似文献   

10.
The aims of this study were to compare different tracer methods to assess whole body protein turnover during 6 h of prolonged endurance exercise when carbohydrate was ingested throughout the exercise period and to investigate whether addition of protein can improve protein balance. Eight endurance-trained athletes were studied on two different occasions at rest (4 h), during 6 h of exercise at 50% of maximal O2 uptake (in sequential order: 2.5 h of cycling, 1 h of running, and 2.5 h of cycling), and during subsequent recovery (4 h). Subjects ingested carbohydrate (CHO trial; 0.7 g CHO.kg(-1.)h(-1)) or carbohydrate/protein beverages (CHO + PRO trial; 0.7 g CHO.kg(-1).h(-1) and 0.25 g PRO.kg(-1).h(-1)) at 30-min intervals during the entire study. Whole body protein metabolism was determined by infusion of L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea tracers with sampling of blood and expired breath. Leucine oxidation increased from rest to exercise [27 +/- 2.5 vs. 74 +/- 8.8 (CHO) and 85 +/- 9.5 vs. 200 +/- 16.3 mg protein.kg(-1).h(-1) (CHO + PRO), P < 0.05], whereas phenylalanine oxidation and urea production did not increase with exercise. Whole body protein balance during exercise with carbohydrate ingestion was negative (-74 +/- 8.8, -17 +/- 1.1, and -72 +/- 5.7 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. Addition of protein to the carbohydrate drinks resulted in a positive or less-negative protein balance (-32 +/- 16.3, 165 +/- 4.6, and 151 +/- 13.4 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. We conclude that, even during 6 h of exhaustive exercise in trained athletes using carbohydrate supplements, net protein oxidation does not increase compared with the resting state and/or postexercise recovery. Combined ingestion of protein and carbohydrate improves net protein balance at rest as well as during exercise and postexercise recovery.  相似文献   

11.
The hypothesis that the magnitude of the postexercise onset threshold for sweating is increased by the intensity of exercise was tested in eight subjects. Esophageal temperature was monitored as an index of core temperature while sweat rate was measured by using a ventilated capsule placed on the upper back. Subjects remained seated resting for 15 min (no exercise) or performed 15 min of treadmill running at either 55, 70, or 85% of peak oxygen consumption (V(o2 peak)) followed by a 20-min seated recovery. Subjects then donned a liquid-conditioned suit used to regulate mean skin temperature. The suit was first perfused with 20 degrees C water to control and stabilize skin and core temperature before whole body heating. Subsequently, the skin was heated ( approximately 4.0 degrees C/h) until sweating occurred. Exercise resulted in an increase in the onset threshold for sweating of 0.11 +/- 0.02, 0.23 +/- 0.01, and 0.33 +/- 0.02 degrees C above that measured for the no-exercise resting values (P < 0.05) for the 55, 70, and 85% of V(o2 peak) exercise conditions, respectively. We did note that there was a greater postexercise hypotension as a function of exercise intensity as measured at the end of the 20-min exercise recovery. Thus it is plausible that the increase in postexercise threshold may be related to postexercise hypotension. It is concluded that the sweating response during upright recovery is significantly modified by exercise intensity and may likely be influenced by the nonthermal baroreceptor reflex adjustments postexercise.  相似文献   

12.
The purpose of the present study was to determine the rates of muscle glycogenolysis and glycogenesis during and after exercise in GLUT-1 transgenic mice and their age-matched littermates. Male transgenic mice (TG) expressing a high level of human GLUT-1 and their nontransgenic (NT) littermates underwent 3 h of swimming. Glycogen concentration was determined in gastrocnemius and extensor digitorum longus (EDL) muscles before exercise and at 0, 5, and 24 h postexercise, during which food (chow) and 10% glucose solution (as drinking water) were provided. Exercise resulted in approximately 90% reduction in muscle glycogen in both NT (from 11.2 +/- 1.4 to 2. 1 +/- 1.3 micromol/g) and TG (from 99.3 +/- 4.7 to 11.8 +/- 4.3 micromol/g) in gastrocnemius muscle. During recovery from exercise, the glycogen concentration increased to 38.2 +/- 7.3 (5 h postexercise) and 40.5 +/- 2.8 micromol/g (24 h postexercise) in NT mice. In TG mice, however, the increase in muscle glycogen concentration during recovery was greater (to 57.5 +/- 7.4 and 152.1 +/- 15.7 micromol/g at 5 and 24 h postexercise, respectively). Similar results were obtained from EDL muscle. The rate of 2-deoxyglucose uptake measured in isolated EDL muscles was 7- to 10-fold higher in TG mice at rest and at 0 and 5 h postexercise. There was no difference in muscle glycogen synthase activation measured in gastrocnemius muscles between NT and TG mice immediately after exercise. These results demonstrate that the rate of muscle glycogen accumulation postexercise exhibits two phases in TG: 1) an early phase (0-5 h), with rapid glycogen accumulation similar to that of NT mice, and 2) a progressive increase in muscle glycogen concentration, which differs from that of NT mice, during the second phase (5-24 h). Our data suggest that the high level of steady-state muscle glycogen in TG mice is due to the increase in muscle glucose transport activity.  相似文献   

13.
The aim of this study was to examine the time course activation of select myogenic (MRF4, Myf5, MyoD, myogenin) and metabolic (CD36, CPT1, HKII, and PDK4) genes after an acute bout of resistance (RE) or run (Run) exercise. Six RE subjects [25 +/- 4 yr (mean +/- SD), 74 +/- 14 kg, 1.71 +/- 0.11 m] and six Run subjects (25 +/- 4 yr, 72 +/- 5 kg, 1.81 +/- 0.07 m, 63 +/- 8 ml.kg(-1).min(-1)) were studied. Eight muscle biopsies were taken from the vastus lateralis (RE) and gastrocnemius (Run) before, immediately after, and 1, 2, 4, 8, 12 and 24 h after exercise. RE increased mRNA of MRF4 (3.7- to 4.5-fold 2-4 h post), MyoD (5.8-fold 8 h post), myogenin (2.6- and 3.5-fold 8-12 h post), HKII (3.6- to 10.5-fold 2-12 h post), and PDK4 (14- to 26-fold 2-8 h post). There were no differences in Myf5, CD36, and CPT1 mRNA levels 0-24 h post-RE. Run increased mRNA of MyoD (5.0- to 8.0-fold), HKII (12- to 16-fold), and PDK4 (32- to 52-fold) at 8-12 h postexercise. There were no differences in MRF4, Myf5, myogenin, CD36 and CPT1 mRNA levels 0-24 h post-Run. These data indicate a myogenic and metabolic gene induction with RE and Run exercise. The timing of the gene induction is variable and generally peaks 4-8 h postexercise with all gene expression not significantly different from the preexercise levels by 24 h postexercise. These data provide basic information for the timing of human muscle biopsy samples for gene-expression studies involving exercise.  相似文献   

14.
We determined the effect of an acute bout of swimming (8 x 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 +/- 31 vs. 247 +/- 16 micromol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 +/- 0.05 and 0.32 +/- 0.04 to 0.63 +/- 0.08 vs. 0.57 +/- 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (approximately 45%) and CHO-supplemented (approximately 115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance.  相似文献   

15.
To compare postexercise changes in plasma lipids and lipoprotein enzymes in 13 hypercholesterolemic (HC) and 12 normocholesterolemic men [total cholesterol (TC) 252 +/- 5 vs. 179 +/- 5 mg/dl], fasting blood samples were obtained 24 h before, immediately, 24, and 48 h after a single bout of treadmill walking (70% peak O(2) consumption, 500 kcal expenditure). Significant findings (P < 0.05 for all) for plasma volume-adjusted lipid and enzyme variables were that TC, low-density-lipoprotein cholesterol, and cholesterol ester transfer protein activity were higher in the HC group but did not influence the lipid responses to exercise. Across groups, TC was transiently reduced immediately after exercise but returned to baseline levels by 24 h postexercise. Decreases in triglyceride and increases in high-density-lipoprotein cholesterol (HDL-C) and HDL(3)-C were observed 24 h after exercise and lasted through 48 h. Lipoprotein lipase activity was elevated by 24 h and remained elevated 48 h after exercise. HDL(2)-C, cholesterol ester transfer protein activity, hepatic triglyceride lipase, and lecithin: cholesterol acyltransferase activities did not change after exercise. These data indicate that the exercise-induced changes in HDL-C and triglyceride are similar in HC and normocholesterolemic men and may be mediated, at least in part, by an increase in lipoprotein lipase activity.  相似文献   

16.
The influence of gender, exercise, and thermal stress on caffeine pharmacokinetics is unclear. We hypothesized that these factors would not have an effect on the metabolism of caffeine. Eight women participated in four 8-h trials and six men participated in two 8-h trials after the ingestion of 6 mg/kg caffeine. The women performed two resting trials (1 in the follicular phase and 1 in the luteal phase of the menstrual cycle) and two exercise trials (90 min of cycling exercise at 65% of maximal O(2) uptake, 1 h after caffeine ingestion) in the follicular phase (1 without and 1 with an additional thermal stress). The men performed one exercise and one resting trial. Menstrual cycle, gender, and exercise, with or without an additional thermal stress, had no effect on the pharmacokinetic measurements or urine caffeine. There was a trend for higher plasma caffeine and lower plasma paraxanthine concentrations in the women. These results confirm that gender, exercise, and thermal stress have no effect on caffeine pharmacokinetics in men and women.  相似文献   

17.
The time of ingestion of a carbohydrate supplement on muscle glycogen storage postexercise was examined. Twelve male cyclists exercised continuously for 70 min on a cycle ergometer at 68% VO2max, interrupted by six 2-min intervals at 88% VO2max, on two separate occasions. A 25% carbohydrate solution (2 g/kg body wt) was ingested immediately postexercise (P-EX) or 2 h postexercise (2P-EX). Muscle biopsies were taken from the vastus lateralis at 0, 2, and 4 h postexercise. Blood samples were obtained from an antecubital vein before and during exercise and at specific times after exercise. Muscle glycogen immediately postexercise was not significantly different for the P-EX and 2P-EX treatments. During the first 2 h postexercise, the rate of muscle glycogen storage was 7.7 mumol.g wet wt-1.h-1 for the P-EX treatment, but only 2.5 mumol.g wet wt-1.h-1 for the 2P-EX treatment. During the second 2 h of recovery, the rate of glycogen storage slowed to 4.3 mumol.g wet wt-1.h-1 during treatment P-EX but increased to 4.1 mumol.g wet wt-1.h-1 during treatment 2P-EX. This rate, however, was still 45% slower (P less than 0.05) than that for the P-EX treatment during the first 2 h of recovery. This slower rate of glycogen storage occurred despite significantly elevated plasma glucose and insulin levels. The results suggest that delaying the ingestion of a carbohydrate supplement post-exercise will result in a reduced rate of muscle glycogen storage.  相似文献   

18.
Intramuscular triglycerides (IMTG) are assumed to form an important substrate source during prolonged endurance exercise in trained males. This study investigated the effects of endurance exercise and recovery diet on IMTG content in vastus lateralis muscle. Nine male cyclists were provided with a standardized diet for 3 days, after which they performed a 3-h exercise trial at a 55% maximum workload. Before and immediately after exercise and after 24 and 48 h of recovery, magnetic resonance spectroscopy (MRS) was performed to quantitate IMTG content. Muscle biopsies were taken after 48 h of recovery to determine IMTG content by using quantitative fluorescence microscopy. The entire procedure was performed two times; in one trial, a normal diet containing 39% energy (En%) as fat was provided (NF) and in the other a typical carbohydrate-rich athlete's diet (LF: 24 En% fat) was provided. During exercise, IMTG content decreased by 21.4 +/- 3.1%. During recovery, IMTG content increased significantly in the NF trial only, reaching preexercise levels within 48 h. In accord with MRS, fluorescence microscopy showed significantly higher IMTG content in the NF compared with the LF trial, with differences restricted to the type I muscle fibers (2.1 +/- 0.2 vs. 1.4 +/- 0.2% area lipid staining, respectively). In conclusion, IMTG content in the vastus lateralis muscle declines significantly during prolonged endurance exercise in male cyclists. When a normal diet is used, IMTG contents are subsequently repleted within 48 h of postexercise recovery. In contrast, IMTG repletion is impaired substantially when a typical, carbohydrate-rich athlete's diet is used. Data obtained by quantitative fluorescence microscopy correspond well with MRS results, implying that both are valid methods to quantify IMTG content.  相似文献   

19.
The reasons for the reduced exercise capacities observed at high altitudes are not completely known. Substrate availability or accumulations of lactate and ammonium could have significant roles. As part of Operation Everest II, peak oxygen uptakes were determined in five normal male volunteers with use of progressively increasing cycling work loads at ambient barometric pressures of 760, 380, and 282 Torr. Decrements from sea level (SL) to 380 and 282 Torr occurred in peak power output (19 and 47%), time to exhaustion (19 and 48%), and oxygen uptake (41 and 61%), respectively. Arterial saturations after exhaustive exercise were decreased to 63% at 380 Torr and 39% at 282 Torr. At 380 and 282 Torr, postexercise plasma concentrations of glucose and free fatty acids were not increased, whereas plasma glycerol concentrations were decreased relative to SL (145 +/- 24 microM at 380 Torr and 77 +/- 10 microM at 282 Torr vs. 213 +/- 24 microM at SL). Preexercise plasma insulin concentrations were elevated at both 380 and 282 Torr (87 +/- 16 pM at 380 Torr and 85 +/- 18 pM at 282 Torr vs. 41 +/- 30 pM at SL). In general, postexercise concentrations of plasma catecholamines were decreased at altitude compared with SL. Preexercise lactate and ammonium concentrations were not different at any simulated altitude. From these data neither substrate availability nor metabolic product accumulation limited exercise capacity at extreme simulated altitude.  相似文献   

20.
Uncoupling protein-3 (UCP3) expression has been shown to increase dramatically in response to muscular contraction, but the physiological significance of UCP3 upregulation is still elusive. In this study, UCP3 mRNA and protein expression were investigated along with mitochondrial respiratory function, reactive oxygen species (ROS) generation, and antioxidant defense in rat skeletal muscle during and after an acute bout of prolonged exercise. UCP3 mRNA expression was elevated sharply at 45 min of exercise, reaching 7- to 8-fold above resting level at 150 min. The increase in UCP3 protein content showed a latent response but was elevated approximately 1.9-fold at 120 min of exercise. Both UCP3 mRNA and UCP3 protein gradually returned to resting levels 24 h postexercise. Mitochondrial ROS production was progressively increased during exercise. However, ROS showed a dramatic drop at 150 min although their levels remained severalfold higher during the recovery. Mitochondrial State 4 respiration rate was increased by 46 and 58% (p < 0.05) at 90 and 120 min, respectively, but returned to resting rate at 150 min, when State 3 respiration and respiratory control index (RCI) were suppressed. ADP-to-oxygen consumption (P/O) ratio and ATP synthase activity were lowered at 3 h postexercise, whereas proton motive force and mitochondrial malondialdehyde content were unchanged. Manganese superoxide dismutase gene expression was not affected by exercise except for an increase in mRNA abundance at 3 h postexercise. These data demonstrate that UCP3 expression in rat skeletal muscle can be rapidly upregulated during prolonged exercise, possibly owing to increased ROS generation. Increased UCP3 may partially alleviate the proton gradient across the inner membrane, thereby reducing further ROS production by the electron transport chain. However, prolonged exercise caused a decrease in energy coupling efficiency in muscle mitochondria revealed by an increased respiration rate due to proton leak (State 4/State 3 ratio) and decreased RCI. We thus propose that the compromise of the oxidative phosphorylation efficiency due to UCP3 upregulation may serve an antioxidant function to protect the muscle mitochondria from exercise-induced oxidative stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号