首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodynamic therapy (PDT) represents a therapeutic approach in which photosensitised neoplastic cells undergo destruction under the effect of light. In this study we have attempted to define effects of PDT on CHO cells, sensitised with protoporphyrin IX (PpIX). The photosensitised CHO cells were exposed to a visible light and development of apoptotic and necrotic lesions was followed in the cells, using the fluorescent staining with propidium iodide and Hoechst 33342. The experiments demonstrated that PpIX and light, acting in parallel, induce development of apoptotic and necrotic lesions in the cells. Intensity of the lesions was correlated with the concentration of the applied photosensibiliser and with the duration of exposure to light. The control experiments suggest that development of apoptosis in the applied model probably reflect mitochondrial damage, while processes developing close to the cell membrane are responsible for necrosis. In order to corroborate the obtained results, ultrastructural studies were performed on experimental groups in which evident apoptotic lesions were observed in the cells.  相似文献   

2.
In 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), ALA taken up by tumor cells is metabolized to protoporphyrin IX (PpIX), which sensitizes photodamage leading to apoptotic or necrotic cell death. Since lipophilic PpIX originates in mitochondria, we postulated that photoperoxidation of highly unsaturated cardiolipin (CL), which anchors cytochrome c (cyt c) to the inner membrane, is an early proapoptotic event. As initial evidence, PpIX-sensitized photooxidation of liposomal CL to hydroperoxide (CLOOH) species precluded cyt c binding, but this could be reinstated by GSH/selenoperoxidase (GPX4) treatment. Further support derived from site-specific effects observed using (i) a mitochondrial GPX4-overexpressing clone (7G4) of COH-BR1 tumor cells, and (ii) an ALA treatment protocol in which most cellular PpIX is either inside (Pr-1) or outside (Pr-2) mitochondria. Sensitized cells were exposed to a lethal light dose, and then analyzed for death mechanism and lipid hydroperoxide (LOOH) levels. Irradiated Pr-1 vector control (VC) cells died apoptotically following cyt c release and caspase-3 activation, whereas 7G4 cells were highly resistant. Irradiated Pr-2 VC and 7G4 cells showed negligible cyt c release or caspase-3 activation, and both types died via necrosis. CLOOH (detected long before cyt c release) accumulated approximately 70% slower in Pr-1 7G4 cells than in Pr-1 VC, and this slowdown exceeded that of all other LOOHs. These and related findings support the hypothesis that CL is a key upstream target in mitochondria-dependent ALA-PDT-induced apoptosis.  相似文献   

3.
Photodynamic therapy (PDT) had been shown effective in the treatment of intimal hyperplasia, which contributes to restenosis, by eradicating cells in the vessel wall. This study is designed to evaluate the effects of PDT with protoporphyrin IX (PpIX) on the viability of vascular smooth muscle cells (SMCs) and to define the cell-death pathway. Fluorescence microscopy and laser-induced fluorescence spectroscopic detection showed that SMCs selectively uptake PpIX, and the intracellular PpIX concentration increases with the amount of PpIX in the incubation solution. PDT with PpIX impaired cellular viability from 93 ± 3.4% to 36 ± 3.9% when the light intensity increases from 2 to 9 J/cm2 and intracellular PpIX concentration increases from 0.5 to 20 μg/ml. Although PDT induced both apoptosis and necrosis, the ratio of apoptotic cells increased with light dosage or intracellular PpIX concentration. The loss of mitochondrial membrane potential coincided with the apoptotic ratio. Our results indicated that the induction of apoptosis of SMCs may be one of the mechanisms by which PDT inhibits restenosis in vivo.  相似文献   

4.
Photodynamic therapy (PDT) and photodetection with protoporphyrin IX (PpIX) precursors have widely been used in the diseases with abnormally proliferative cells, but the mechanism of the modality is not fully understood yet. In this study 70-95% of apoptotic cells after PDT with PpIX precursor, hexaminolevulinate (HAL) in two human lymphoma cell lines, Namalwa and Bjab, were confirmed by fluorescence microscopy, electron microscopy and flow cytometry. HAL-derived PpIX was mainly distributed in the mitochondria and endoplasmic reticulum (ER), both of which were initial targets after light exposure causing two major pathways simultaneously involved in the apoptotic induction. One was the mitochondrial pathway including the release of cytochrome c, cleavage of caspases-9/-3, poly(ADP-ribose) polymerase and DNA fragmentation factor. The other was the ER stress-mediated pathway triggering a transient increase in the cytosolic Ca(2+) level after photodamage to the ER calcium pump protein SERCA2. The released Ca(2+) further initiated the caspase-8 cleavage. The use of both extracellular Ca(2+) chelator EGTA and intracellular Ca(2+) chelator BAPTA-AM confirmed that such cytosolic Ca(2+) originated from the ER rather than extracellular Ca(2+)-containing medium. About 30% of the apoptosis was blocked with BAPTA-AM alone; while a complete inhibition of such apoptosis was achieved with a combination of the caspase-9 inhibitor Z-LEHD-FMK and caspase-8 inhibitor Z-IETD-FMK, thus quantifying each role of the mitochondrial and ER pathways.  相似文献   

5.
Antitumor photodynamic therapy (PDT) with administered 5-aminolevulinic acid (ALA) is based on metabolism of ALA to protoporphyrin IX (PpIX), which acts as a sensitizer of photo-oxidative damage leading to apoptotic or necrotic cell death. An initial goal of this study was to ascertain how the PpIX-sensitized death mechanism for a breast tumor line (COH-BR1 cells) might be influenced by the conditions of ALA exposure in vitro. Two different treatment protocols were developed for addressing this question: (i) continuous incubation with 1 mM ALA for 90 min; and, (ii) discontinuous incubation, i.e., 15 min with 1 mM ALA followed by 225 min without it. Following exposure to 2 J/cm2 of visible light, cell viability, death mechanism, and lipid hydroperoxide (LOOH) level were evaluated for each protocol using thiazolyl blue, Hoechst staining, and HPLC with electrochemical detection assays, respectively. PpIX was found to sensitize apoptosis when it existed mainly in mitochondria (protocol-1), but necrosis when it diffused to other sites, including plasma membrane (protocol-2). Experiments with a transfectant clone, 7G4, exhibiting approximately 85 times greater activity of the LOOH-detoxifying selenoenzyme GPX4 than parental cells, provided additional information about death mechanism. Located predominantly in mitochondria of 7G4 cells, GPX4 strongly inhibited both LOOH accumulation and apoptosis under protocol-1 conditions, but had no significant effect under protocol-2 conditions. These findings support the hypothesis that LOOHs produced by attack of photogenerated singlet oxygen on mitochondrial membrane lipids play an important early role in the apoptotic death cascade.  相似文献   

6.
Effect of the iron chelator deferoxamine (DF) on the production of endogenous porphyrins was studied in adenocarcinoma WiDr cells and erythroid K562 cells in vitro. Porphyrin fluorescence was observed in the cells in vitro incubated with DF. The fluorescence spectra recorded in the cells were similar to that of protoporphyrin IX (PpIX). The amount of PpIX generated by DF was around 5% of the ALA effect. Around 90% of the WiDr cells incubated in vitro with DF (0.5 mM, 24 h) and then exposed to light (400-460 nm, 20 min) were photodynamically inactivated. In conclusion, the present study describes a novel approach of using iron chelating agents without 5-aminolevulinic acid (ALA) to photosensitize cancer cells.  相似文献   

7.
Protoporphyrinogen oxidase (EC 1.3.3.4, PPOX) is the last enzyme in the branched tetrapyrrole biosynthetic pathway, before its substrate protoporphyrin is directed to the Mg and Fe branches for chlorophyll and haem biosynthesis, respectively. The enzyme exists in many plants in two similar isoforms, which are either exclusively located in plastids (PPOX I) or in mitochondria and plastids (PPOX II). Antisense RNA expression inhibited the formation of PPOX I in transgenic tobacco plants, which showed reduced growth rate and necrotic leaf damage. The cytotoxic effect is attributed to accumulation of photodynamically acting protoporphyrin. The expression levels of PPOX I mRNA and protein and the cellular enzyme activities were reduced to similar extents in transgenic plants grown under low- or high-light conditions (70 and 530 mumol photons m(-2) sec(-1)). More necrotic leaf lesions were surprisingly generated under low- than under high-light exposure. Several reasons were explored to explain this paradox and the intriguing necrotic phenotype of PPOX-deficient plants under both light intensity growth conditions. The same reduction of PPOX expression and activity under both light conditions led to similar initial protoporphyrin, but to faster decrease in protoporphyrin content during high light. It is likely that a light intensity-dependent degradation of reduced and oxidized porphyrins prevents severe photodynamic leaf damage. Moreover, under high-light conditions, elevated contents of reduced and total low-molecular-weight antioxidants contribute to the protection against photosensitizing porphyrins. These reducing conditions stabilize protoporphyrinogen in plastids and allow their redirection into the metabolic pathway.  相似文献   

8.
alphaA-crystallin is a small heat-shock protein expressed preferentially in the lens and is detected during the early stages of lens development. Recent work indicates that the expression of alphaA-crystallin enhances lens epithelial cell growth and resistance to stress conditions. Mutation of the arginine 116 residue to cysteine (R116C) in alphaA-crystallin has been associated with congenital cataracts in humans. However, the physiological consequences of this mutation have not been analyzed in lens epithelial cells. In the present study, we expressed wild type or R116C alphaA-crystallin in the human lens epithelial cell line HLE B-3. Immunofluorescence and confocal microscopy indicated that both wild type and R116C alphaA-crystallin were distributed mainly in the cytoplasm of lens epithelial cells. Size-exclusion chromatography indicated that the size of the alphaA-crystallin aggregate in lens epithelial cells increased from 500 to 600 kDa for the wild type protein to >2 MDa in the R116C mutant. When cells were exposed to physiological levels of UVA radiation, wild type alphaA-crystallin protected cells from apoptotic death as shown by annexin labeling and flow cytometric analysis, whereas the R116C mutant had a 4- to 10-fold lower protective ability. UVA-irradiated cells expressing the wild type protein had very low TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) staining, whereas cells expressing R116C mutant had a high level of TUNEL staining. F-actin was protected in UVA-treated cells expressing the wild type alphaA-crystallin but was either clumped around the apoptotic cells or was absent in apoptotic cells in cultures expressing the R116C mutant. Structural changes caused by the R116C mutation could be responsible for the reduced ability of the mutant to protect cells from stress. Our study shows that comparing the stress-induced apoptotic cell death is an effective way to compare the protective abilities of wild type and mutant alphaA-crystallin. We propose that the diminished protective ability of the R116C mutant in lens epithelial cells may contribute to the pathogenesis of cataract.  相似文献   

9.
10.
Accumulation of protoporphyrin IX (PpIX) in cancer cells is a basis of 5-aminolevulinic acid (ALA)-induced photodymanic therapy. We studied factors that affect PpIX accumulation in human urothelial carcinoma cell line T24, with particular emphasis on ATP-binding cassette transporter G2 (ABCG2) and serum in the medium. When the medium had no fetal bovine serum (FBS), ALA induced PpIX accumulation in a time- and ALA concentration-dependent manner. Inhibition of heme-synthesizing enzyme, ferrochelatase, by nitric oxide donor (Noc18) or deferoxamine resulted in a substantial increase in the cellular PpIX accumulation, whereas ABCG2 inhibition by fumitremorgin C or verapamil induced a slight PpIX increase. When the medium was added with FBS, cellular accumulation of PpIX stopped at a lower level with an increase of PpIX in the medium, which suggested PpIX efflux. ABCG2 inhibitors restored the cellular PpIX level to that of FBS(-) samples, whereas ferrochelatase inhibitors had little effects. Bovine serum albumin showed similar effects to FBS. Fluorescence microscopic observation revealed that inhibitors of ABC transporter affected the intracellular distribution of PpIX. These results indicated that ABCG2-mediated PpIX efflux was a major factor that prevented PpIX accumulation in cancer cells in the presence of serum. Inhibition of ABCG2 transporter system could be a new target for the improvement of photodynamic therapy.  相似文献   

11.
Binding of the serum protein complement component C1q to the surface of dying cells facilitates their clearance by phagocytes in a process termed efferocytosis. Here, we investigate during which phase of apoptotic cell death progression C1q binding takes place. Purified C1q was found to bind to all dying cells and, albeit weaker, also to viable cells. The presence of serum abrogated completely the binding to viable cells. In addition, C1q binding to dying cells was limited to a specific subpopulation of late apoptotic/secondary necrotic cells. Co-culturing serum-treated apoptotic cells with human monocytes revealed a much higher phagocytosis of C1q-positive than of C1q-negative late apoptotic/secondary necrotic cells. But this phagocytosis-promoting activity could not be observed with purified C1q. Serum-treated C1q-positive late apoptotic/secondary necrotic cells exhibited a similar volume, a similar degraded protein composition, but a much lower DNA content in comparison with the remaining late apoptotic/secondary necrotic cells. This was mediated by a serum-bound nuclease activity that could be abrogated by G-actin, which is a specific inhibitor of serum DNase I. These results show that serum factors are involved in the prevention of C1q binding to viable cells and in the processing of late apoptotic/secondary necrotic cells promoting cell death progression toward apoptotic bodies. This process leads to the exposure of C1q-binding structures and facilitates efferocytosis.  相似文献   

12.
Recently, photodynamic therapy using 5-aminolevulinic acid (ALA-PDT) has been widely used in cancer therapy. ALA administration results in tumor-selective accumulation of the photosensitizer protoporphyrin IX (PpIX) via the heme biosynthetic pathway. Although ALA-PDT has selectivity for tumor cells, PpIX is accumulated into cultured normal cells to a small extent, causing side effects. The mechanism of tumor-selective PpIX accumulation is not well understood. The purpose of the present study was to identify the mechanism of tumor-selective PpIX accumulation after ALA administration. We focused on mitochondrial labile iron ion, which is the substrate for metabolism of PpIX to heme. We investigated differences in iron metabolism between tumor cells and normal cells and found that the amount of mitochondrial labile iron ion in cancer was lower than that in normal cells. This finding could be because of the lower expression of mitoferrins, which are the mitochondrial iron transporters. Accordingly, we added sodium ferrous citrate (SFC) with ALA as a source of iron. As a result, we observed the accumulation of PpIX only in tumor cells, and only these cells showed sensitivity to ALA-PDT. Taken together, these results suggest that the uptake abilities of iron ion into mitochondria play a key role in tumor-selective PpIX accumulation. Using SFC as a source of iron might thus increase the specificity of ALA-PDT effects.  相似文献   

13.
Photodynamic therapy (PDT) for tumors is based on the tumor‐selective accumulation of a photosensitizer, protoporphyrin IX (PpIX), followed by irradiation with visible light. However, the molecular mechanism of cell death caused by PDT has not been fully elucidated. The 5‐aminolevulinic acid (ALA)‐based photodynamic action (PDA) was dependent on the accumulation of PpIX, the level of which decreased rapidly by eliminating ALA from the incubation medium in human histiocytic lymphoma U937 cells. PDA induced apoptosis characterized by lipid peroxidation, increase in Bak and Bax/Bcl‐xL, decrease in Bid, membrane depolarization, cytochrome c release, caspase‐3 activation, phosphatidylserine (PS) externalization. PDT‐induced cell death seemed to occur predominantly via apoptosis through distribution of PpIX in mitochondria. These cell death events were enhanced by ferrochelatase inhibitors. These results indicated that ALA‐based‐PDA induced apoptotic cell death through a mitochondrial pathway and that ferrochelatase inhibitors might enhanced the effect of PDT for tumors even at low concentrations of ALA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
5 氨乙酰丙酸 (ALA)可在肿瘤内诱导原卟啉区 (PpIX)光敏剂形成 ,但其亲脂性极差 ,进入细胞的能力有限。脂化的ALA衍生物能增强其进入细胞的能力 ,增进细胞中PpIX的合成。比较了氨乙酰丙酸己酯 (He ALA)与ALA对肝癌细胞中PpIX的生成及光动力损伤作用。细胞的荧光显微图象显示 ,经He ALA培育后 ,细胞中生成了PpIX。PpIX分布在细胞质中 ;细胞的荧光光谱显示出PpIX的特征荧光峰 ,证实细胞中PpIX的生成。实验发现 ,0 .2mmol/L的He ALA药物浓度与 2mmol/LALA的药物浓度在细胞中生成的PpIX含量相当 ;予以相同剂量的光照射后 ,两者对细胞的光敏损伤程度相近 ,反映He ALA对癌细胞有更高的光动力损伤功效。因此在光动力治疗的应用中 ,He ALA是一种极有开发前景的新药物  相似文献   

15.
Lectin from Chelidonium majus L. (CML) significantly stimulates the proliferation of human lymphocytes and has hemagglutination activity towards group B human erythrocytes and potent antimicrobial properties against multiresistant enterococci and staphylococci. In the present work we describe the effect of lectin from Chelidonium majus L on normal and cancercells in culture in vitro. The studies were performed on three types of cells: CHO, R2C and on normal mouse fibroblasts. Effects on the cultures were examined 24 h after addition of CML. Exposure to CML resulted in growth inhibition of CHO and R2C cells but not of fibroblasts. Moreover, evident apoptotic lesions were observed in CHO cells and less well marked apoptotic lesions in R2C cells. In contrast, only insignificant numbers of fibroblasts reacted to the applied lectin.  相似文献   

16.
Complement is the canonical innate immune system involved in host defense and tissue repair with the clearance of cell debris. In contrast to the robust armory mounted against microbial nonself-pathogens, complement is selectively activated on altered self (i.e. apoptotic and necrotic cells) to instruct the safe demise by poorly characterized mechanisms. Our data shed new light on the role of complement C1q in sensing nucleic acids (NA) rapidly exposed on apoptotic Jurkat T cell membranes and in driving C3 opsonization but without the lytic membrane attack complex. DNA/RNase-treated apoptotic cells failed to activate complement. We found that several other apoptotic cell models, including senescent keratinocytes, ionophore-treated sperm cells, and CMK-derived platelets, stained for cleaved caspase 3 were rapidly losing the key complement regulator CD46. CD46 from nuclear and membrane stores was found to cluster into blebs and shed into microparticles together with NA, phosphatidylserine, C1q, and factor H. Classical and alternative pathways of complement were involved in the recognition of H2O2-treated necrotic cells. Membrane attack complex was detected on necrotic cells possibly as a result of CD46 and CD59 shedding into soluble forms. Our data highlight a novel and universal paradigm whereby the complement innate immune system is using two synergistic strategies with the recognition of altered self-NA and missing self-CD46 signals to instruct and tailor the efficient removal of apoptotic and necrotic cells in immunoprivileged sites.  相似文献   

17.
Heme oxygenase-1 (HO-1), the inducible enzyme responsible for the rate-limiting step in the heme catabolism, is expressed in AIDS-Kaposi sarcoma (KS) lesions. Its expression is up-regulated by the Kaposi sarcoma-associated herpesvirus (KSHV) in endothelial cells, but the mechanisms underlying KSHV-induced HO-1 expression are still unknown. In this study we investigated whether the oncogenic G protein-coupled receptor (KSHV-GPCR or vGPCR), one of the key KSHV genes involved in KS development, activated HO-1 expression. Here we show that vGPCR induces HO-1 mRNA and protein levels in fibroblasts and endothelial cells. Moreover, targeted knock-down gene expression of HO-1 by small hairpin RNA and chemical inhibition of HO-1 enzymatic activity by tin protoporphyrin IX (SnPP), impaired vGPCR-induced survival, proliferation, transformation, and vascular endothelial growth factor (VEGF)-A expression. vGPCR-expressing cells implanted in the dorsal flank of nude mice developed tumors with elevated HO-1 expression and activity. Chronic administration of SnPP to the implanted mice, under conditions that effectively blocked HO-1 activity and VEGF-A expression in the transplanted cells, strikingly reduced tumor growth, without apparent side effects. On the contrary, administration of the HO-1 inducer cobalt protoporphyrin (CoPP) further enhanced vGPCR-induced tumor growth. These data postulate HO-1 as an important mediator of vGPCR-induced tumor growth and suggest that inhibition of intratumoral HO-1 activity by SnPP may be a potential therapeutic strategy.  相似文献   

18.
Cytosolic Ca(2+) elevations are known to be involved in triggering apoptosis in many tissues, but the effect of sustained enhancement of Ca(2+) influx on apoptosis in beta cells remains unknown. We have found that the viability of RINm5F cells is decreased dose-dependently by continuous exposure to glibenclamide at concentrations from 10(-7) to 10(-4) M, and that this effect is partially ameliorated by pretreatment with cycloheximide. Electrophoresis of the cells exposed to glibenclamide revealed ladder-like fragmentation characteristic of apoptosis, and which also is suppressed by cycloheximide pretreatment. By using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, we detected increased DNA fragmentation in the nuclei of the cells exposed to glibenclamide, and staining with Hoechst 33342 and propidium iodide showed a dose-dependent increase in the number of cells with the chromatin condensation and fragmentation in their nuclei that is characteristic of apoptosis. The effects of glibenclamide on cell viability and apoptotic cell death were partially inhibited by treatment with Ca(2+) channel blocker, and by reducing the extracellular Ca(2+) concentration during glibenclamide exposure, suggesting that they may be derived from increased Ca(2+) influx. Furthermore, only the percentage of apoptotic cells, and not that of necrotic cells, increased with the increasing intracellular Ca(2+) concentration during glibenclamide exposure. In conclusion, we have demonstrated that the sustained enhancement of Ca(2+) influx caused by glibenclamide exposure can induce apoptotic cell death in a pure beta cell line.  相似文献   

19.
When grown in short day conditions and at low light, leaves of Arabidopsis plants with mutations in the genes encoding two plastidial ATP/ADP transporters (so-called null mutants) spontaneously develop necrotic lesions. Under these conditions, the mutants also display light-induced accumulation of H(2)O(2) and constitutive expression of genes for copper/zinc superoxide dismutase 2 and ascorbate peroxidase 1. In the light phase, null mutants accumulate high levels of phototoxic protoporphyrin IX but have only slightly reduced levels of Mg protoporphyrin IX. The physiological changes are associated with reduced magnesium-chelatase activity. Since the expression of genes encoding any of the three subunits of magnesium-chelatase is similar in wild type and null mutants, decreased enzyme activity is probably due to post-translational modification which might be due to limited availability of ATP in plastids during the night. Surprisingly, the formation of necrotic lesions was absent when null mutants were grown either in long days and low light intensity or in short days and high light intensity. We ascribe the lack of lesion phenotype to increased nocturnal ATP supply due to glycolytic degradation of starch which may lead to additional substrate-level phosphorylation in the stroma. Thus, nocturnal import of ATP into chloroplasts represents a crucial, previously unknown process that is required for controlled chlorophyll biosynthesis and for preventing photooxidative damage.  相似文献   

20.
The p53 tumor suppressor is recognized as a promising target for anti-cancer therapies. We previously reported that protoporphyrin IX (PpIX) disrupts the p53/murine double minute 2 (MDM2) complex and leads to p53 accumulation and activation of apoptosis in HCT 116 cells. Here we show the direct binding of PpIX to the N-terminal domain of p53. Furthermore, we addressed the induction of apoptosis in HCT 116 p53-null cells by PpIX and revealed interactions between PpIX and p73. We propose that PpIX disrupts the p53/MDM2 or MDMX and p73/MDM2 complexes and thereby activates the p53- or p73-dependent cancer cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号