共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of the analysis of the data on adsorption of glycolytic enzymes to structural proteins of skeletal muscle and to erythrocyte membranes, the data on enzyme-enzyme interactions and the data on the regulation of activity of glycolytic enzymes by cellular metabolites the structure of glycolytic enzyme complex adsorbed to a biological support has been proposed. The key role in the formation of the multienzyme complex belongs to 6-phosphofructokinase. The enzyme molecule has two association sites, one of which provides the fixation of 6-phosphofructokinase on the support and another is saturated by fructose-1,6-bisphosphate aldolase. The multienzyme complex fixed on structural proteins of skeletal muscle contains one tetrameric molecule of 6-phosphofructokinase and at two molecules of other glycolytic enzymes. Hexokinase is not involved in the complex composition. The molecular mass of the multienzyme complex is about 2,6 X 10(6) Da. The formation of the multienzyme complex leads to the compartmentation of the glycolytic process. The problem of integration of physico-chemical mechanisms of enzyme activity regulation (allosteric, dissociative and adsorptive mechanisms) is discussed. 相似文献
2.
Supramolecular organization of tricarboxylic acid cycle enzymes 总被引:1,自引:0,他引:1
We propose a spatial structure for the tricarboxylic acid cycle enzyme complex (tricarboxylic acid cycle metabolon). The structure is based on an analysis of data on the interaction between tricarboxylic acid cycle enzymes and the mitochondrial inner membrane, as well as on data on enzyme-enzyme interactions. The alpha-ketoglutarate dehydrogenase complex, adsorbed along one of the 3-fold symmetry axes of the mitochondrial inner membrane, plays a key role in formation of the metabolon. In the interaction with the membrane, two association sites of the alpha-ketoglutarate dehydrogenase complex participate, placed on opposite sides of the complex. The tricarboxylic acid cycle enzyme complex contains one molecule of the alpha-ketoglutarate dehydrogenase complex and six molecules of each of the other enzymes of the tricarboxylic acid cycle, as well as aspartate aminotransferase and nucleoside-diphosphate kinase. Succinate dehydrogenase, which is the integral protein of the mitochondrial inner membrane, is a component of the anchor site responsible for the assembly of the metabolon on the membrane. The molecular mass of the complex (without regard to succinate dehydrogenase) is 8 x 10(6) Da. The metabolon symmetry corresponds to the D3 point symmetry group. 相似文献
3.
In virtue of analysis of data on the interaction of tricarboxylic acid cycle enzymes with the mitochondrial inner membrane and data on the enzyme-enzyme interactions, the spatial structure for the tricarboxylic acid cycle enzyme complex (tricarboxylic acid cycle metabolon) is proposed. The alpha-ketoglutarate dehydrogenase complex, adsorbed on the mitochondrial inner membrane along one of its 3-fold symmetry axes, plays the key role in the formation of metabolon. Two association sites of the alpha-ketoglutarate dehydrogenase complex located on opposite sides of the complex participate in the interaction with the membrane. The tricarboxylic acid cycle enzyme complex contains one molecule of the alpha-ketoglutarate dehydrogenase complex and six molecules of each of the other enzymes of the tricarboxylic acid cycle, as well as aspartate aminotransferase and nucleosidediphosphate kinase. Succinate dehydrogenase, the integral protein of the mitochondrial inner membrane, is a component of the anchor site responsible for the assembly of metabolon on the membrane. The molecular mass of the complex (ignoring succinate dehydrogenase) is of 8.10(6) daltons. The metabolon symmetry corresponds to the D3 point symmetry group. It is supposed, that the tricarboxylic acid cycle enzyme complex interacts with other multienzyme complexes of the matrix and the electron transfer chain. 相似文献
4.
Evolution of glycolytic enzymes 总被引:4,自引:0,他引:4
M G Rossman 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1981,293(1063):191-203
The requirements for glycolysis are examined in relation to other essential metabolic processes in the most primitive organisms. The construction of more complex enzymes from primitive domain building blocks is assessed with respect to glycolytic enzymes. Special attention is given to the evolution of the NAD binding domain in dehydrogenases and the related, frequently observed nucleotide binding domain. An attempt is made to differentiate between convergence and divergence of frequently observed domains. Consideration is given to the structure-function relation of these domains and the development of quaternary structure in later stages of evolution. Some attention is also given to the evolution of the structural adaptation to extreme environments as a means of differentiating between essential functions and specific modifications. 相似文献
5.
6.
Summary Cell-free extracts ofZymomonas mobilis were capable of fermenting glucose to ethanol and CO2 when stimulated by arsenate to act as an ATP uncoupler. 2M glucose was completely converted resulting in a final concentration of 16.5 % w/v ethanol. 1 M glucose was completely converted at temperatures up to 50°C. The results demonstrate that the glycolytic enzymes are more resistant to temperature and ethanol than are the living cells. 相似文献
7.
8.
Partition equilibrium experiments have been used to characterize the interactions of erythrocyte ghosts with four glycolytic enzymes, namely aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase and lactate dehydrogenase, in 5 mM sodium phosphate buffer (pH 7.4). For each of these tetrameric enzymes a single intrinsic association constant sufficed to describe its interaction with erythrocyte matrix sites, the membrane capacity for the first three enzymes coinciding with the band 3 protein content. For lactate dehydrogenase the erythrocyte membrane capacity was twice as great. The membrane interactions of aldolase and glyceraldehyde-3-phosphate dehydrogenase were mutually inhibitory, as were those involving either of these enzymes and lactate dehydrogenase. Although the binding of phosphofructokinase to erythrocyte membranes was inhibited by aldolase, there was a transient concentration range of aldolase for which its interaction with matrix sites was enhanced by the presence of phosphofructokinase. In the presence of a moderate concentration of bovine serum albumin (15 mg/ml) the binding of aldolase to erythrocyte ghosts was enhanced in accordance with the prediction of thermodynamic nonideality based on excluded volume. At higher concentrations of albumin, however, the measured association constant decreased due to very weak binding of the space-filling protein to either the enzyme or the erythrocyte membrane. The implications of these findings are discussed in relation to the likely subcellular distribution of glycolytic enzymes in the red blood cell. 相似文献
9.
Dutow P Schmidl SR Ridderbusch M Stülke J 《Journal of molecular microbiology and biotechnology》2010,19(3):134-139
With only 688 protein-coding genes, Mycoplasma pneumoniae is one of the smallest self-replicating organisms. These bacteria use glycolysis as the major pathway for ATP production by substrate-level phosphorylation, suggesting that this pathway must be optimized to high efficiency. In this study, we have investigated the interactions between glycolytic enzymes using the bacterial adenylate cyclase-based two-hybrid system. We demonstrate that most of the glycolytic enzymes perform self-interactions, suggesting that they form dimers or other oligomeric forms. In addition, enolase was identified as the central glycolytic enzyme of M. pneumoniae due to its ability to directly interact with all other glycolytic enzymes. Our results support the idea of the formation of a glycolytic complex in M. pneumoniae and we suggest that the formation of this complex might ensure higher fluxes through the glycolytic pathway than would be possible with isolated non-interacting enzymes. 相似文献
10.
Chloroquine at pH 8.0 and 10 mM concentration inhibits about 30% glucose consumption and ethanol formation in yeast cells. Out of the 11 glycolytic enzymes assayed, phosphoglycerate kinase and pyruvate decarboxylase have been found to be most sensitive to chloroquine. Next sensitive are hexokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. Kinetic studies with the three kinases studied revealed competitive inhibition of chloroquine with ATP (hexokinase, phosphoglycerate kinase) or ADP (pyruvate kinase). 相似文献
11.
12.
13.
J. Pérez-Rigueiro L. Biancotto P. Corsini E. Marsano M. Elices G.R. Plaza G.V. Guinea 《International journal of biological macromolecules》2009,44(2):195-202
The microstructures of N-methylmorpholine-N-oxide (NMMO) regenerated silk fibers have been characterized by atomic force microscopy from the micrometer to the nanometer scale and compared with those previously found from natural silks. Regenerated fibers show poor tensile properties and a brittle behavior, but their mechanical properties improve if subjected to post-spinning drawing. Consequently, it was hypothesized that post-spinning drawing would lead to a microstructure more similar to that of the natural material. Here we show that the microstructure of the samples not subjected to post-spinning drawing is composed of nanoglobules that differ from those found in natural silkworm silk both in size and orientation with respect to the macroscopic axis of the fiber. The microstructure of samples subjected to post-spinning drawing evolves in the sense of decreasing the size but increasing the orientation of the nanoglobules, but these effects are only observed in some regions of the fibers. 相似文献
14.
15.
16.
Turnover of several glycolytic enzymes in rat liver 总被引:5,自引:0,他引:5
17.
18.
《Cell cycle (Georgetown, Tex.)》2013,12(7):1015-1016
Comment on: Zha X, et al. Cancer Res 2011; 71:13-8. 相似文献
19.
Two glycolytic enzymes, phosphoglycerate mutase (PGM) and enolase from Saccharomyces cerevisiae, have been chosen to detect complex formation and possible channeling, using molecular dynamics simulation. The enzymes were separated by 10 angstroms distance and placed in a water-filled box of size 173 x 173 x 173 angstroms. Three different orientations have been investigated. The two initial 3-phosphoglycerate substrate molecules near the active centers of the initial structure of PGM have been replaced with final product (2-phosphoglycerate) molecules, and 150 mM NaCl together with three Mg2+ ions have been added to the system to observe post-catalytic activity under near-physiological conditions. Analysis of interaction energies and conformation changes for 3 nsec simulation indicates that PGM and enolase do show binding affinity between their near active regions, which is necessary for channeling to occur. Interaction of the C-terminal residues Ala239 and Val240 of PGM (which partially "cap" the 2-phosphoglycerate) with enolase also favors the existence of channeling. 相似文献
20.
G Minaschek U Gr?schel-Stewart S Blum J Bereiter-Hahn 《European journal of cell biology》1992,58(2):418-428
The microcompartmentation of aldolase and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was investigated in four different cell types (3T3 cells, SV 40 transformed 3T3 cells, mouse fibroblasts, chick embryo cardiomyocytes) combining cell permeabilization and indirect immunofluorescence technique. Permeabilization of the cells prior to fixation released the soluble fractions, whilst the total amount of enzymes was preserved in nonpermeabilized cells. Both enzymes exist in a soluble as well as in a structure-bound form. The soluble fraction of aldolase and GAPDH is distributed homogeneously throughout the cytoplasm, excluding the nucleus and vesicles. The permeabilization-resistant form is associated with the actin cytoskeleton. A considerable amount of both enzymes is located in the perinuclear region and cannot be attributed to a definite structure. Comparing the staining patterns of aldolase and GAPDH in four different cell types we found that the distribution of the enzymes corresponds with diverse forms of actin cytoskeletal organization of these cells. The codistribution is maintained in cells treated with cytochalasin D. 相似文献