首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 0.09 saturated solutions of the n-alkanols n-hexanol to n-tridecanol on the surface (compensation) potential of lipid monolayers have been examined. Actions on monolayers spread from pure egg phosphatidylcholine have been compared with effects on a system containing a 2:1 mole ratio of egg phosphatidylcholine and cholesterol. The mean compensation potential for the pure phospholipid system was 475 ± 9 mV; addition of cholesterol increased the potential to 503 ± 10 mV. All n-alkanols tested reduced the surface potential in both systems. The reduction was larger in the pure phospholipid system but the difference in effect between lipid systems declined as the n-alkanol chainlength increased, becoming negligible by n-tridecanol. These results are considered in relation to the ‘cut-off’ in biological activity of n-alkanols around n-tridecanol.  相似文献   

2.
Pressure versus distance relationships have been obtained for egg phosphatidylcholine bilayers containing a range of cholesterol concentrations. Water was removed from between adjacent bilayers by the application of osmotic pressures in the range of 0.4-2600 atm (4 x 10(5)-2.6 x 10(9) dyn/cm2), and the distance between adjacent bilayers was obtained by Fourier analysis of X-ray diffraction data. For applied pressures up to about 50 atm and bilayer surface separations of 15-5 A, the incorporation of up to equimolar cholesterol has little influence on plots of pressure versus bilayer separation. However, for the higher applied pressures, cholesterol reduces the interbilayer separation distance by an amount that depends on the cholesterol concentration in the bilayer. For example, the incorporation of equimolar cholesterol reduces the distance between bilayers by as much as 6 A at an applied pressure of 2600 atm. At this applied pressure, electron density profiles show that the high-density head-group peaks from apposing bilayers have merged. This indicates that equimolar concentrations of cholesterol spread the lipid molecules apart in the plane of the bilayer enough to allow the phosphatidylcholine head groups from apposing bilayers to interpenetrate as the bilayers are squeezed together. All of these X-ray and pressure-distance data indicate that, by reducing the volume fraction of phospholipid head groups, cholesterol markedly reduces the steric repulsion between apposing bilayers but has a much smaller effect on the sum of the longer ranged repulsive hydration and fluctuation pressures. Increasing concentrations of cholesterol monotonically increase the dipole potential of egg phosphatidylcholine monolayers, from 415 mV with no cholesterol to 493 mV with equimolar cholesterol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We have examined the association of Ca2+ with phosphatidylserine/cholesterol and phosphatidylserine/dimyristoylphosphatidylcholine mixed monolayers using a surface radiocounting technique. No Ca2+ association with pure monolayers of the uncharged molecules was observed. The Ca2+/phosphatidylserine surface ratio was approximately 1:2 in expanded monolayers of the pure anionic lipid and in phosphatidylserine/phosphatidylcholine mixtures. An increase in surface-associated Ca2+ to a number ratio of 1:1 was observed in phosphatidylserine/cholesterol films when the mole fraction of cholesterol was raised to 0.5 and above and the phospholipid number density held constant. We interpret these findings as a prevention of intermolecular salt formation by the sterol. Further support is provided by particle electrophoresis.  相似文献   

4.
J P Slotte 《Biochemistry》1992,31(24):5472-5477
In this study, we have used cholesterol oxidase as a probe to study cholesterol/phospholipid interactions in mixed monolayers at the air/water interface. Mixed monolayers, containing a single phospholipid class and cholesterol at differing cholesterol/phospholipid molar ratios, were exposed to cholesterol oxidase at a lateral surface pressure of 20 mN/m (at 22 degrees C). At equimolar ratios of cholesterol to phospholipid, the average rate of cholesterol oxidation was fastest in unsaturated phosphatidylcholine mixed monolayers (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and egg yolk phosphatidylcholine), intermediate in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and slowest in sphingomyelin monolayers (egg yolk or bovine brain sphingomyelin). The average oxidation rate in mixed monolayers was not exclusively a function of monolayer packing density, since egg yolk and bovine brain sphingomyelin mixed monolayers occupied similar mean molecular areas even though the measured average oxidation rate was different with these two phospholipids. This suggests that the phospholipid acyl chain composition influenced the oxidation rate. The importance of the phospholipid acyl chain length on influencing the average oxidation rate was further examined in defined phosphatidylcholine mixed monolayers. The average oxidation rate decreased linearly with increasing acyl chain lengths (from di-8:0 to di-18:0). When the average oxidation rate was examined as a function of the cholesterol to phospholipid (C/PL) molar ratio in the monolayer, the otherwise linear function displayed a clear break at a 1:1 stoichiometry with phosphatidylcholine mixed monolayers, and at a 2:1 C/PL stoichiometry with sphingomyelin mixed monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The purpose of this study was to examine the effects of cholesterol surface transfer between lipid vesicles and rat arterial smooth muscle cells on endogenous synthesis of cholesterol and phosphatidylcholine. Lipid vesicles containing cholesterol and egg phosphatidylcholine in different proportions were used as the extracellular lipid source. The rate of cellular cholesterol and phosphatidylcholine synthesis was determined from the [14C]acetate incorporation into these lipid classes. [3H]Cholesterol in lipid vesicles, with a cholesterol/phospholipid (C/P) mole ratio of 1:1, was rapidly transferred into rat smooth muscle cells, with a half-time of about 3.6 hours in the absence of serum proteins. Incubation of cells for 5 hours with vesicles of a high C/P mole ratio (i.e. 1.5:1) at vesicle-cholesterol concentrations above 100 micrograms/ml resulted in a marked reduction of cellular cholesterol synthesis, whereas the rate of phosphatidylcholine synthesis was increased. Cells incubated with lipid vesicles of C/P 1:2 did not show any change in cellular cholesterol or phosphatidylcholine synthesis. Incubation of cells with egg phosphatidylcholine vesicles at concentrations above 300 micrograms/ml, on the other hand, stimulated endogenous synthesis of cholesterol without affecting cellular phosphatidylcholine synthesis. The main conclusion is that cholesterol surface transfer may influence cellular lipid metabolism in the absence of mediating serum lipoproteins in a model system with cultured cells and lipid vesicles.  相似文献   

6.
A multiple equilibrium binding model is used to examine phospholipid and cholesterol binding with the transmembranous protein Ca2+-ATPase (calcium pump). The protein was reconstituted in egg phosphatidylcholine bilayers by lipid substitution of rabbit muscle sarcoplasmic reticulum. Electron spin resonance spectra of a phosphatidylcholine spin-label and a recently developed cholesterol spin-label show two major spectral contributions, a motionally restricted component consistent with interactions between the label and the protein surface and another component characteristic of motion of the label in a fluid lipid bilayer. The number of lipid binding (or contact) sites at the hydrophobic surface of the protein is calculated to be N = 22 +/- 2. Experiments with intact sarcoplasmic reticulum membranes give approximately the same value for N. The relative binding constants are Kav approximately 1 for the phosphatidylcholine label and Kav approximately 0.65 for the cholesterol spin-label. Thus, cholesterol does contact the surface of the protein, but with a somewhat lower probability than phosphatidylcholine. This is confirmed by competition experiments where unlabeled cholesterol and the phospholipid spin-label are both present in the bilayer. Evidently the flexible acyl chains of the phospholipid molecules accommodate more readily to the irregular surface of the protein than does the rigid steroid structure of cholesterol.  相似文献   

7.
Epifluorescence microscopy was used to investigate the effect of cholesterol on monolayers of dipalmitoylphosphatidylcholine (DPPC) and 1 -palmitoyl-2-oleoyl phosphatidylcholine (POPC) at 21 +/- 2 degrees C using 1 mol% 1-palmitoyl-2-[12-[(7-nitro-2-1, 3-benzoxadizole-4-yl)amino]dodecanoyl]phosphatidylcholine (NBD-PC) as a fluorophore. Up to 30 mol% cholesterol in DPPC monolayers decreased the amounts of probe-excluded liquid-condensed (LC) phase at all surface pressures (pi), but did not effect the monolayers of POPC, which remained in the liquid-expanded (LE) phase at all pi. At low pi (2-5 mN/m), 10 mol% or more cholesterol in DPPC induced a lateral phase separation into dark probe-excluded and light probe-rich regions. In POPC monolayers, phase separation was observed at low pi when > or =40 mol% or more cholesterol was present. The lateral phase separation observed with increased cholesterol concentrations in these lipid monolayers may be a result of the segregation of cholesterol-rich domains in ordered fluid phases that preferentially exclude the fluorescent probe. With increasing pi, monolayers could be transformed from a heterogeneous dark and light appearance into a homogeneous fluorescent phase, in a manner that was dependent on pi and cholesterol content. The packing density of the acyl chains may be a determinant in the interaction of cholesterol with phosphatidylcholine (PC), because the transformations in monolayer surface texture were observed in phospholipid (PL)/sterol mixtures having similar molecular areas. At high pi (41 mN/m), elongated crystal-like structures were observed in monolayers containing 80-100 mol% cholesterol, and these structures grew in size when the monolayers were compressed after collapse. This observation could be associated with the segregation and crystallization of cholesterol after monolayer collapse.  相似文献   

8.
J A Ibdah  M C Phillips 《Biochemistry》1988,27(18):7155-7162
To better understand the factors controlling the binding of apolipoprotein molecules at the surfaces of serum lipoprotein particles, the adsorption of human apolipoprotein A-I to phospholipid monolayers has been studied. The influence of lipid packing was investigated by spreading the monolayers at various initial surface pressures (pi i) and by using various types of lipid. The adsorption of 14C-methylated apolipoprotein A-I was monitored by simultaneously following the surface radioactivity (which could be converted to the surface concentration of protein, gamma) and the change in surface pressure (delta pi). In general, increasing the pi i of lipid monolayers reduces the adsorption of apolipoprotein A-I; for expanded egg phosphatidylcholine (PC) monolayers at pi i greater than or equal to 32 dyn/cm, gamma and delta pi are zero. The degree of adsorption of the apolipoprotein is also influenced by the physical state of the lipid monolayers. Thus, at a given pi i, apolipoprotein A-I adsorbs more to expanded monolayers than to condensed monolayers so that, at a given subphase concentration of protein, gamma of apolipoprotein A-I with various phospholipid monolayers decreases in the order egg PC greater than egg sphingomyelin greater than distearoyl-PC. The plot of gamma against pi i for adsorption of apolipoprotein A-I to dipalmitoylphosphatidylcholine (DPPC) monolayers shows an inflection at pi i = 8 dyn/cm; at this pi, the DPPC monolayer undergoes a phase transition from liquid (expanded) to solid (condensed) state. Addition of cholesterol generally decreases the adsorption of apolipoprotein A-I to egg PC monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Apoprotein (apo) A-1 binding to large triolein-rich emulsion particles saturated with cholesterol has been examined as a function of the oleic acid content. Six emulsion systems were formed containing 0.3-1.0% (by weight) oleic acid, 82.9-86.3% triolein, 10.6-7.2% egg yolk phosphatidylcholine, and 6.7-5.5% cholesterol. The average emulsion particle diameters calculated from these lipid compositions ranged between 84 and 116 nm. Negative stain electron microscopy of an emulsion containing 1% oleic acid showed a polydisperse population of only large spherical particles with a mean diameter of 116 +/- 54 nm. The calculated cholesterol concentrations of the particles surface and core for the six emulsions were 43.3 +/- 1.1 and 5.6 +/- 0.2 mol%, respectively, and were rather constant. Therefore, when the surface oleic acid concentrations increased from 2.6 to 10.1 mol%, the phospholipid concentration decreased from 55.1 to 45.9 mol%. In the core, oleic acid increased at the expense of triolein. In the range studied a nearly 4-fold increase in the surface oleic acid content produces a similar increase in the binding capacity (N) and reduces the dissociation constant (Kd). The changes in the Kd and N values were linearly dependent on the surface oleic acid concentration. These data show that oleic acid allows more apoA-1 to bind with higher affinity to large emulsion particles saturated with cholesterol.  相似文献   

10.
We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface.  相似文献   

11.
We have examined the association of Ca2+ with phosphatidylserine/cholesterol and phosphatidylserine/ dimyristoylphosphatidylcholine mixed monolayers using a surface radiocounting technique. No Ca2+ association with pure monolayers of the uncharged molecules was observed. The Ca2+/phosphatidylserine surface ratio was approximately 1:2 in expanded monolayers of the pure anionic lipid and in phosphatidylserine/phosphatidylcholine mixtures. An increase in surface-associated Ca2+ to a number ratio of 1:1 was observed in phosphatidylserine/cholesterol films when the mole fraction of cholesterol was raised to 0.5 and above and the phospholipid number density held constant. We interpret these findings as a prevention of intermolecular salt formation by the sterol. Further support is provided by particle electrophoresis  相似文献   

12.
Cultures of newborn rat heart myocytes undergo major age-related alterations as demonstrated by comparing 5-6-day-old cells ("young cells") and 14-15-day-old cells ("old cells"). This includes: changes from spherical to elongated shape; sphingomyelin and cholesterol level/cell increase by 100% and 50%, respectively, while the phosphatidylcholine is reduced by 15-20% with almost no change in content of total phospholipids. There is a 50% increase in total protein content/cell while DNA content remain constant. The specific activity of seven marker enzymes representing most subcellular organelles is increased. Beating rate is reduced from 160 +/- 20 to 20 +/- 20 beats min-1. All the above age-dependent alterations are affected by modification of cellular polar lipid composition. Small unilamellar vesicles of egg phosphatidylcholine added to the growth medium of old cells serve as donor of egg phosphatidylcholine to the cells and as acceptor of cellular sphingomyelin and cholesterol. Sphingomyelin-phospholipid exchange can be separated from cholesterol depletion either by using vesicles of egg phosphatidylcholine/cholesterol mixtures which serve only in the phospholipid exchange process, or by small unilamellar vesicles of sphingomyelin which act only as efficient cholesterol acceptors. Such experiments indicated that the major response of old cells is to alteration in the phosphatidylcholine to sphingomyelin mole ratio, while changes in the cholesterol level induce smaller effects. Thus, reversal of phosphatidylcholine to sphingomyelin mole ratio to the values shown by young cells reverse cellular functions and features which were altered by cell aging to levels found in young cells. This includes: increase in the beating rate back to 160 +/- 20, reduction in the total protein level and in the specific activity per DNA content of seven marker enzymes and reappearance of spherical cell shape. These results suggest that membrane lipid composition has major influence on cellular properties which as described in the accompanying paper (Yechiel, E., Barenholz, Y., and Henis, Y. I. (1985) J. Biol. Chem. 260, 9132-9136), may be mediated through the organization and dynamics of the cell membranes.  相似文献   

13.
Cultured heart cells serve as a common model for studying the electronphysiology and pharmacology of intact cells of the myocardium from which they are derived (Sperelakis, N. (1982) in Cardiovascular Toxicology (Van Stel, E.W., ed.), pp. 57-108, Raven Press, New York). In this study, heart cell reaggregates were used for investigating the relationship between lipid composition and aging of the heart cells. Spherical reaggregates were prepared from newborn, 3- and 18-month-old rats, respectively. They were grown for 6 days in culture and then analyzed for their lipid composition and creatine phosphokinase levels. There was an age-related increase in total phospholipids and cholesterol level per unit of cell protein. Due to a relatively greater increase in the cholesterol, the mole ratio of cholesterol to phospholipids increased with animal age. The phospholipid composition was also affected. Thus, sphingomyelin levels increased, while those of phosphatidylcholine decreased; these alterations became much more pronounced with increasing animal age. All these changes could be affected by adding small unilamellar vesicles composed of egg phosphatidylcholine to the growth medium on the 5th day after seeding. Such treatment resulted in a lesser ratio of cholesterol to phospholipid as well as sphingomyelin to phosphatidylcholine, without reducing the total phospholipid per unit protein; the level of creatine phosphokinase was also reduced. This study demonstrated that cultured heart reaggregates can serve as a model for studying aging of the whole animal. Its main advantage is the ability to employ cells from rats of any desired age. Currently this is not possible for cultured heart monolayers.  相似文献   

14.
The transient membrane lipid diacylglycerol (DG) is known to modify and destabilize phospholipid bilayers and can lead to the formation of nonbilayer structures. Since cholesterol forms a major fraction of many plasma membranes, we have investigated how it modifies the structural effects of DG on bilayers of egg phosphatidylcholine (PC) and egg phosphatidylethanolamine (PE). We view these systems as modelling the behaviour of local, DG-containing sites in membranes. Using X-ray diffraction, we have characterized the lamellar (L alpha) and inverse hexagonal (HII) structures that these ternary lipid mixtures form in excess aqueous solution. As the DG level increases, the lipid progresses from a single L alpha structure to a mixture of L alpha and HII, and then to a pure HII structure. This allows determination of the DG levels at which the HII transition begins, which we interpret as those levels that destabilize bilayers. In both PC and PE bilayers, the presence of 30 mol% cholesterol reduces the amounts of DG required to destabilize the bilayer structure. The destabilization can be translated into the number of neighbouring lipid molecules that a DG molecule perturbs, and of bilayer areas that it affects. The data show that the presence of cholesterol greatly enhances the perturbing effects of DG. We examine the possible role of DG in enzyme activation and membrane fusion.  相似文献   

15.
Ergosta-5,7,9,22-tetraen-3-β-ol (dehydroergosterol) was synthesized and employed as a probe of cholesterol behavior in phospholipid bilayers. Circular dichroism (CD) spectra were obtained. The CD of dehydroergosterol in sonicated egg phosphatidylcholine vesicles was dependent on cholesterol concentration, while in unsonicated egg phosphatidylcholine liposomes and in vesicles obtained by oxctylglucoside dialysis, the CD observed was independent of cholesterol content. The CD of dehydroergosterol in sonicated sphingomyelin vesicles exhibited a different dependence on cholesterol content than seen in sonicated egg phosphatidylcholine vesicles. These data are interpreted in terms of differences between the packing of cholesterol in systems of large and small radii of curvature and in different interactions between dehydroergosterol and phosphatidylcholine and sphingomyelin.  相似文献   

16.
Molecular dynamics (MD) computer simulations of five different hydrated unsaturated phosphatidylcholine lipid bilayers built up by 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules with 40 mol% cholesterol, and the same five pure phosphatidylcholine bilayers have been performed at 303 K. The simulation box of a lipid bilayer contained 96 phosphatidylcholines, 64 cholesterols, and 3840 water molecules (48 phosphatidylcholine molecules and 32 cholesterols per layer and 24 water molecules per phospholipid or cholesterol in each case). The lateral self-diffusion coefficients of the lipids in these systems and mass density profiles with respect to the bilayer normal have been analyzed. It has been found that the lateral diffusion coefficients of phosphatidylcholine molecules increase with increasing number of double bonds in one of the lipid chains, both in pure bilayers and in bilayers with cholesterol. It has been found as well that the lateral diffusion coefficient of phosphatidylcholine molecules of a lipid bilayer with 40 mol% cholesterol is smaller than that for the corresponding pure phosphatidylcholine bilayer.  相似文献   

17.
The effect of 2, 4-dinitrophenol, DNP, on monolayers of egg lecithin, hydrogenated egg lecithin, dipalmitoyl lecithin and mitochondrial lipids has been examined. Both the undissociated and dissociated forms of DNP bind to the phospholipid polar groups. Binding of the acid form leads to a decrease in monolayer surface potential and an expansion of the monolayer. The amount of penetration of the acid form into lecithin monolayers appears to depend on the London-Van der Waals attractions between the lecithin hydrocarbon chains. Binding of the 2,4-dinitro-phenolate anion is reflected in a decrease in surface potential for lecithin monolayers, and an increase in surface potential for mitochondrial lipid monolayers. The adsorption of dinitro-phenolate to egg lecithin has been further investigated by micro-electrophoresis of lecithin liposomes. It is suggested that binding of DNP to phospholipid-water interfaces is important in determining its action as an uncoupler of oxidative phosphorylation, and as a compound that increases the electrical conductance of artificial lipid membranes.  相似文献   

18.
The interaction of sonicated, small vesicles of egg phosphatidylcholine and cholesterol (2:1, mol/mol) with bovine high density serum lipoproteins was examined in terms of lipid transfer between both types of particles and the resulting changes in lipoprotein structure. Saturation of high density lipoprotein preparations with vesicle lipids gave final lipoprotein particles with essentially unchanged protein content and composition, unchanged cholesterylester and nonpolar lipid content, but with markedly increased phospholipid content (59% increas by weight) and moderately increased cholesterol content (20% increase by weight). The lipoproteins enriched in lipid were relatively uniform, spherical particles, 110 +/- 3.6 A in diameter (6 A larger than the original lipoproteins); they had a markedly decreased intrinsic protein fluorescence, a red-shifted fluorescence wavelength maximum, and more fluid lipid domains. These results indicate that the direct addition of excess lipids from membranes or other lipoproteins is a possible mechanism for lipid transfer to high density lipoproteins. Also they suggest a structural flexibility of high density lipoproteins that allows the addition of significant amounts of surface components.  相似文献   

19.
Phospholipids, sphingolipids, and sterols are the major lipid components of the plasma membranes of eukaryotic cells. Because these three lipid classes occur naturally as enantiomerically pure compounds, enantiospecific lipid-lipid and lipid-sterol interactions could in principle occur in the lipid bilayers of eukaryotic plasma membranes. Although previous biophysical studies of phospholipid and phospholipid-sterol model membrane systems have consistently failed to observe such enantiomerically selective interactions, a recent monolayer study of the interactions of natural and enantiomeric cholesterol with egg sphingomyelin has apparently revealed the existence of enantiospecific sterol-sphingolipid interactions. To determine whether enantiospecific sterol-sphingolipid interactions also occur in more biologically relevant lipid-bilayer systems, differential scanning calorimetric, x-ray diffraction, and neutral buoyant-density measurements were utilized to study the effects of natural and enantiomeric cholesterol on the thermotropic phase behavior and structure of egg sphingomyelin bilayers. The calorimetry experiments show that the natural and enantiomeric cholesterol have essentially identical effects on the temperature, enthalpy, and cooperativity of the gel/liquid-crystalline phase transition of egg sphingomyelin bilayers within the limits of experimental error. As well, the x-ray diffraction and neutral buoyancy experiments indicate that bilayers formed from mixtures of natural or enantiomeric cholesterol and egg sphingomyelin have, within experimental uncertainty, the same structure and mass density. We thus conclude that significant enantioselective cholesterol-sphingolipid interactions do not occur in this lipid-bilayer model membrane system.  相似文献   

20.
We have investigated the effect of the presence of 25 mol percent cholesterol on the interactions of the antimicrobial peptide gramicidin S (GS) with phosphatidylcholine and phosphatidylethanolamine model membrane systems using a variety of methods. Our circular dichroism spectroscopic measurements indicate that the incorporation of cholesterol into egg phosphatidylcholine vesicles has no significant effect on the conformation of the GS molecule but that this peptide resides in a range of intermediate polarity as compared to aqueous solution or an organic solvent. Our Fourier transform infrared spectroscopic measurements confirm these findings and demonstrate that in both cholesterol-containing and cholesterol-free dimyristoylphosphatidylcholine liquid-crystalline bilayers, GS is located in a region of intermediate polarity at the polar--nonpolar interfacial region of the lipid bilayer. However, GS appears to be located in a more polar environment nearer the bilayer surface when cholesterol is present. Our (31)P-nuclear magnetic resonance studies demonstrate that the presence of cholesterol markedly reduces the tendency of GS to induce the formation of inverted nonlamellar phases in model membranes composed of an unsaturated phosphatidylethanolamine. Finally, fluorescence dye leakage experiments indicate that cholesterol inhibits the GS-induced permeabilization of phosphatidylcholine vesicles. Thus in all respects the presence of cholesterol attenuates but does not abolish the interactions of GS with, and the characteristic effects of GS on, phospholipid bilayers. These findings may explain why it is more potent at disrupting cholesterol-free bacterial than cholesterol-containing eukaryotic membranes while nevertheless disrupting the integrity of the latter at higher peptide concentrations. This additional example of the lipid specificity of GS may aid in the rational design of GS analogs with increased antibacterial but reduced hemolytic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号