首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we have shown that Ag85B-ESAT-6 is a highly efficient vaccine against tuberculosis. However, because the ESAT-6 Ag is also an extremely valuable diagnostic reagent, finding a vaccine as effective as Ag85B-ESAT-6 that does not contain ESAT-6 is a high priority. Recently, we identified a novel protein expressed by Mycobacterium tuberculosis designated TB10.4. In most infected humans, TB10.4 is strongly recognized, raising interest in TB10.4 as a potential vaccine candidate and substitute for ESAT-6. We have now examined the vaccine potential of this protein and found that vaccination with TB10.4 induced a significant protection against tuberculosis. Fusing Ag85B to TB10.4 produced an even more effective vaccine, which induced protection against tuberculosis comparable to bacillus Calmette-Guerin vaccination and superior to the individual Ag components. Thus, Ag85B-TB10 represents a new promising vaccine candidate against tuberculosis. Furthermore, having now exchanged ESAT-6 for TB10.4, we show that ESAT-6, apart from being an excellent diagnostic reagent, can also be used as a reagent for monitoring vaccine efficacy. This may open a new way for monitoring vaccine efficacy in clinical trials.  相似文献   

2.
Mycobacterium tuberculosis is one of the worlds' most successful and sophisticated pathogens. It is estimated that over 2 billion people today harbour latent M. tuberculosis infection without any clinical symptoms. As most new cases of active tuberculosis (TB) arise from this (growing) number of latently infected individuals, urgent measures to control TB reactivation are required, including post-exposure/therapeutic vaccines. The current bacille Calmette-Guérin (BCG) vaccine and all new generation TB vaccines being developed and tested are essentially designed as prophylactic vaccines. Unfortunately, these vaccines are unlikely to be effective in individuals already latently infected with M. tuberculosis. Here, we argue that detailed analysis of M. tuberculosis genes that are switched on predominantly during latent stage infection may lead to the identification of new antigenic targets for anti-TB strategies. We will describe essential host-pathogen interactions in TB with particular emphasis on TB latency and persistent infection. Subsequently, we will focus on novel groups of late-stage specific genes, encoded amongst others by the M. tuberculosis dormancy (dosR) regulon, and summarise recent studies describing human T-cell recognition of these dormancy antigens in relation to (latent) M. tuberculosis infection. We will discuss the possible relevance of these new classes of antigens for vaccine development against TB.  相似文献   

3.
In contrast to the great majority of mycobacterial species that are harmless saprophytes, Mycobacterium tuberculosis and other closely related tubercle bacilli have evolved to be among the most important human and animal pathogens. The need to develop new strategies in the fight against tuberculosis (TB) and related diseases has fuelled research into the evolutionary success of the M. tuberculosis complex members. Amongst the various disciplines, genomics and functional genomics have been instrumental in improving our understanding of these organisms. In this review we will present some of the recent key findings on molecular determinants of mycobacterial pathogenicity and attenuation, the evolution of M. tuberculosis, genome dynamics, antigen mining for improved diagnostic and subunit antigens, and finally the identification of novel drug targets. The genomics revolution has changed the landscape of TB research, and now underpins our renewed efforts to defeat this deadly pathogen.  相似文献   

4.
结核病是由结核分枝杆菌感染引起的传染病,是危害人类健康的主要传染病之一。目前被广泛应用的卡介苗对于新生儿和儿童的严重播散性疾病有很好的保护效果,但对于成人活动性结核病的有效性,却存在很大的争议。近年来,人们一直努力研发新疫苗并且已经取得了一些成果。这些新型结核疫苗在临床测试中的结果是非常令人兴奋和鼓舞人心的。但是,我们仍需继续探索新型结核疫苗。  相似文献   

5.
Bacillus Calmette-Guerin (BCG) vaccine has failed to control the global tuberculosis (TB) epidemic, and there is a lack of safe and effective mucosal vaccines capable of potent protection against pulmonary TB. A recombinant replication-deficient adenoviral-based vaccine expressing an immunogenic Mycobacterium tuberculosis Ag Ag85A (AdAg85A) was engineered and evaluated for its potential to be used as a respiratory mucosal TB vaccine in a murine model of pulmonary TB. A single intranasal, but not i.m., immunization with AdAg85A provided potent protection against airway Mycobacterium tuberculosis challenge at an improved level over that by cutaneous BCG vaccination. Systemic priming with an Ag85A DNA vaccine and mucosal boosting with AdAg85A conferred a further enhanced immune protection which was remarkably better than BCG vaccination. Such superior protection triggered by AdAg85 mucosal immunization was correlated with much greater retention of Ag-specific T cells, particularly CD4 T cells, in the lung and was shown to be mediated by both CD4 and CD8 T cells. Thus, adenoviral TB vaccine represents a promising novel vaccine platform capable of potent mucosal immune protection against TB. Our study also lends strong evidence that respiratory mucosal vaccination is critically advantageous over systemic routes of vaccination against TB.  相似文献   

6.
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a major global health problem, despite the widespread use of the M. bovis Bacille Calmette-Guerin (BCG) vaccine and the availability of drug therapies. In recent years, the high incidence of coinfection of M. tuberculosis and HIV, as well as escalating problems associated with drug resistance, has raised ominous concerns with regard to TB control. Vaccination with BCG has not proven highly effective in controlling TB, and also has been associated with increasing concerns about the potential for the vaccine to cause disseminated mycobacterial infection in HIV infected hosts. Thus, the development of an efficacious and safe TB vaccine is generally viewed as a critical to achieving control of the ongoing global TB pandemic. In the current study, we have analyzed the vaccine efficacy of an attenuated M. tuberculosis strain that combines a mutation that enhances T cell priming (ΔsecA2) with a strongly attenuating lysine auxotrophy mutation (ΔlysA). The ΔsecA2 mutant was previously shown to be defective in the inhibition of apoptosis and markedly increased priming of antigen-specific CD8(+) T cells in vivo. Similarly, the ΔsecA2ΔlysA strain retained enhanced apoptosis and augmented CD8(+) T cell stimulatory effects, but with a noticeably improved safety profile in immunosuppressed mice. Thus, the M. tuberculosis ΔsecA2ΔlysA mutant represents a live attenuated TB vaccine strain with the potential to deliver increased protection and safety compared to standard BCG vaccination.  相似文献   

7.
The intrinsic resistance of Mycobacterium tuberculosis and related pathogens to most common antibiotics limits chemotherapeutic options to treat tuberculosis and other mycobacterial diseases. Resistance has traditionally been attributed to the unusual multi-layer cell envelope that functions as an effective barrier to the penetration of antibiotics. Recent insights into mechanisms that neutralize the toxicity of antibiotics in the cytoplasm have revealed systems that function in synergy with the permeability barrier to provide intrinsic resistance. Here, we highlight the growing pool of information about internal, antibiotic-responsive regulatory proteins and corresponding resistance genes, and present new concepts that rationalize how they might have evolved. Pharmaceutical inhibition of these intrinsic systems could make many previously available antibiotics active against M. tuberculosis.  相似文献   

8.
We report a computational approach that integrates structural bioinformatics, molecular modelling and systems biology to construct a drug-target network on a structural proteome-wide scale. The approach has been applied to the genome of Mycobacterium tuberculosis (M.tb), the causative agent of one of today's most widely spread infectious diseases. The resulting drug-target interaction network for all structurally characterized approved drugs bound to putative M.tb receptors, we refer to as the 'TB-drugome'. The TB-drugome reveals that approximately one-third of the drugs examined have the potential to be repositioned to treat tuberculosis and that many currently unexploited M.tb receptors may be chemically druggable and could serve as novel anti-tubercular targets. Furthermore, a detailed analysis of the TB-drugome has shed new light on the controversial issues surrounding drug-target networks [1]-[3]. Indeed, our results support the idea that drug-target networks are inherently modular, and further that any observed randomness is mainly caused by biased target coverage. The TB-drugome (http://funsite.sdsc.edu/drugome/TB) has the potential to be a valuable resource in the development of safe and efficient anti-tubercular drugs. More generally the methodology may be applied to other pathogens of interest with results improving as more of their structural proteomes are determined through the continued efforts of structural biology/genomics.  相似文献   

9.
Khare G  Kar R  Tyagi AK 《PloS one》2011,6(7):e22441
Tuberculosis (TB) continues to pose a serious challenge to human health afflicting a large number of people throughout the world. In spite of the availability of drugs for the treatment of TB, the non-compliance to 6-9 months long chemotherapeutic regimens often results in the emergence of multidrug resistant strains of Mycobacterium tuberculosis adding to the precariousness of the situation. This has necessitated the development of more effective drugs. Thiamin biosynthesis, an important metabolic pathway of M. tuberculosis, is shown to be essential for the intracellular growth of this pathogen and hence, it is believed that inhibition of this pathway would severely affect the growth of M. tuberculosis. In this study, a comparative homology model of M. tuberculosis thiamin phosphate synthase (MtTPS) was generated and employed for virtual screening of NCI diversity set II to select potential inhibitors. The best 39 compounds based on the docking results were evaluated for their potential to inhibit the MtTPS activity. Seven compounds inhibited MtTPS activity with IC(50) values ranging from 20-100 μg/ml and two of these exhibited weak inhibition of M. tuberculosis growth with MIC(99) values being 125 μg/ml and 162.5 μg/ml while one compound was identified as a very potent inhibitor of M. tuberculosis growth with an MIC(99) value of 6 μg/ml. This study establishes MtTPS as a novel drug target against M. tuberculosis leading to the identification of new lead molecules for the development of antitubercular drugs. Further optimization of these lead compounds could result in more potent therapeutic molecules against Tuberculosis.  相似文献   

10.
The development of an effective vaccine against Mycobacterium tuberculosis is a research area of intense interest. Mounting evidence suggests that protective immunity to M. tuberculosis relies on both MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells. By purifying polypeptides present in the culture filtrate of M. tuberculosis and evaluating these molecules for their ability to stimulate PBMC from purified protein derivative-positive healthy individuals, we previously identified a low-m.w. immunoreactive T cell Ag, Mtb 8.4, which elicited strong Th1 T cell responses in healthy purified protein derivative-positive human PBMC and in mice immunized with recombinant Mtb 8.4. Herein we report that Mtb 8.4-specific T cells can be detected in mice immunized with the current live attenuated vaccine, Mycobacterium bovis-bacillus Calmette-Guérin as well as in mice infected i.v. with M. tuberculosis. More importantly, immunization of mice with either plasmid DNA encoding Mtb 8.4 or Mtb 8.4 recombinant protein formulated with IFA elicited strong CD4(+) T cell and CD8(+) CTL responses and induced protection on challenge with virulent M. tuberculosis. Thus, these results suggest that Mtb 8.4 is a potential candidate for inclusion in a subunit vaccine against TB.  相似文献   

11.
Tuberculosis (TB) disease caused by Mycobacterium tuberculosis (M. tb) remains one of the leading infectious causes of death and disease throughout the world. The only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG) confers highly variable protection against pulmonary disease. An effective vaccination regimen would be the most efficient way to control the epidemic. However, BCG does confer consistent and reliable protection against disseminated disease in childhood, and most TB vaccine strategies being developed incorporate BCG to retain this protection. Cellular immunity is necessary for protection against TB and all the new vaccines in development are focused on inducing a strong and durable cellular immune response. There are two main strategies being pursued in TB vaccine development. The first is to replace BCG with an improved whole organism mycobacterial priming vaccine, which is either a recombinant BCG or an attenuated strain of M. tb. The second is to develop a subunit boosting vaccine, which is designed to be administered after BCG vaccination, and to enhance the protective efficacy of BCG. This article reviews the leading candidate vaccines in development and considers the current challenges in the field with regard to efficacy testing.  相似文献   

12.
Need for new drugs to fight against tuberculosis (TB) is increasing day by day. In the present work we have taken a spiro compound (GSK 2200150A) reported by GSK as a lead and we modified the structure of the lead to study the antitubercular activity. For structure activity profiling twenty-one molecules have been synthesized, characterized and evaluated for their antimycobacterial potency against both active and dormant TB. Compound 06, 1-((4-methoxyphenyl)sulfonyl)-4′,5′-dihydrospiro[piperidine-4,7′-thieno[2,3-c]pyran] was found to be the most potent compound (MIC: 8.23?µM) in active TB and was less effective than the lead but more potent than standard first line drug ethambutol. It was also found to be more efficacious than Isoniazid and Rifampicin and equipotent as Moxifloxacin against dormant Mycobacterium tuberculosis (MTB). Compound 06 also showed good inhibitory potential against over expressed latent MTB enzyme lysine ε-amino transferase with an IC50 of 1.04?±?0.32?µM. This compound is a good candidate for drug development owing to potential against both active and dormant stages of MTB.  相似文献   

13.
Tuberculosis (TB) remains a leading cause of mortality worldwide. With the emergence of multidrug resistant TB, extensively drug resistant TB and HIV-associated TB it is imperative that new drug targets be identified. The potential of Mycobacterium tuberculosis inosine monophosphate dehydrogenase (IMPDH) as a novel drug target was explored in the present study. IMPDH exclusively catalyzes the conversion of inosine monophosphate (IMP) to xanthosine monophosphate (XMP) in the presence of the cofactor nicotinamide adenine dinucleotide (NAD(+)). Although the enzyme is a dehydrogenase, the enzyme does not catalyze the reverse reaction i.e. the conversion of XMP to IMP. Unlike other bacteria, M. tuberculosis harbors three IMPDH-like genes, designated as Mt-guaB1, Mt-guaB2 and Mt-guaB3 respectively. Of the three putative IMPDH's, we previously confirmed that Mt-GuaB2 was the only functional ortholog by characterizing the enzyme kinetically. Using an in silico approach based on designed scaffolds, a series of novel classes of inhibitors was identified. The inhibitors possess good activity against M. tuberculosis with MIC values in the range of 0.4 to 11.4 μg mL(-1). Among the identified ligands, two inhibitors have nanomolar K(i)s against the Mt-GuaB2 enzyme.  相似文献   

14.
Tuberculosis (TB) is a chronic infectious disease caused mainly by Mycobacterium tuberculosis. The worldwide emergence of drug-resistant strains, the increasing number of infected patients among immune compromised populations, and the large number of latent infected individuals that are reservoir to the disease have underscored the urgent need of new strategies to treat TB. The nucleotide metabolism pathways provide promising molecular targets for the development of novel drugs against active TB and may, hopefully, also be effective against latent forms of the pathogen. The orotate phosphoribosyltransferase (OPRT) enzyme of the de novo pyrimidine synthesis pathway catalyzes the reversible phosphoribosyl transfer from 5'-phospho-α-D-ribose 1'-diphosphate (PRPP) to orotic acid (OA), forming pyrophosphate and orotidine 5'-monophosphate (OMP). Here we describe cloning and characterization of pyrE-encoded protein of M. tuberculosis H37Rv strain as a homodimeric functional OPRT enzyme. The M. tuberculosis OPRT true kinetic constants for forward reaction and product inhibition results suggest a Mono-Iso Ordered Bi-Bi kinetic mechanism, which has not been previously described for this enzyme family. Absence of detection of half reaction and isothermal titration calorimetry (ITC) data support the proposed mechanism. ITC data also provided thermodynamic signatures of non-covalent interactions between substrate/product and M. tuberculosis OPRT. These data provide a solid foundation on which to base target-based rational design of anti-TB agents and should inform us how to better design inhibitors of M. tuberculosis OPRT.  相似文献   

15.
Development of accurate methods for predicting progression of tuberculosis (TB) from the latent state is recognized as vitally important in controlling TB, because a majority of cases develop from latent infections. Past TB that has never been treated has a higher risk of progressing than does latent Mycobacterium tuberculosis infection in patients who have previously received treatment. Antibody responses against 23 kinds of M. tuberculosis proteins in individuals with past TB who had not been medicated were evaluated. These individuals had significantly higher concentrations of antibodies against Antigen 85A and mycobacterial DNA‐binding protein 1 (MDP1) than did those with active TB and uninfected controls. In addition, immunohistochemistry revealed colocalization of tubercle bacilli, antigen 85 and MDP1 inside tuberculous granuloma lesions in an asymptomatic subject, showing that M. tuberculosis in lesions expresses both antigen 85 and MDP1. Our study suggests the potential usefulness of measuring antibody responses to antigen 85A and MDP1 for assessing the risk of TB progression.  相似文献   

16.
The tuberculosis (TB) vaccine strain Mycobacterium bovis BCG is unable to utilise alanine and this deficiency is thought to inhibit the growth of the vaccine in vivo and limit vaccine efficacy. In this report we demonstrate that L-alanine catabolism can be conferred on BCG by introduction of the gene encoding L-alanine dehydrogenase (Ald) of Mycobacterium tuberculosis. Restoration of Ald activity did not change the in vivo growth of BCG in macrophages or mice, and protection against aerosol M. tuberculosis infection was not altered by addition of ald to the BCG vaccine. These results demonstrate that the inability to utilise L-alanine is not a contributing factor to the attenuated phenotype of BCG and does not influence the protective efficacy of the vaccine against TB.  相似文献   

17.
Pulmonary tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB) and still remains one of the foremost fatal infectious diseases, infecting nearly a third of the worldwide population. The emergencies of multidrug-resistant and extensively drug-resistant tuberculosis (MDR and XDR-TB) prompt the efforts to deliver potent and novel anti-TB drugs. Research aimed at the development of new anti-TB drugs based on nitrofuran scaffold led to the identification of several candidates that were effective against actively growing as well as latent mycobacteria with unique modes of action. This review focuses on the recent advances in nitrofurans that could provide intriguing potential leads in the area of anti-TB drug discovery.  相似文献   

18.
Zhao S  Zhao Y  Mao F  Zhang C  Bai B  Zhang H  Shi C  Xu Z 《PloS one》2012,7(2):e31908
Tuberculosis (TB) remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG), has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS) strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA) and human interleukin 12 (hIL-12). Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB) were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2) in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.  相似文献   

19.
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a bacterial pathogen that claims roughly 1.4 million lives every year. Current drug regimens are inefficient at clearing infection, requiring at least 6 months of chemotherapy, and resistance to existing agents is rising. There is an urgent need for new drugs that are more effective and faster acting. The folate pathway has been successfully targeted in other pathogens and diseases, but has not yielded a lead drug against tuberculosis. We developed a high-throughput screening assay against Mtb dihydrofolate reductase (DHFR), a critical enzyme in the folate pathway, and screened a library consisting of 32,000 synthetic and natural product-derived compounds. One potent inhibitor containing a quinazoline ring was identified. This compound was active against the wild-type laboratory strain H37Rv (MIC(99)?=?207 μM). In addition, an Mtb strain with artificially lowered DHFR levels showed increased sensitivity to this compound (MIC(99)?=?70.7 μM), supporting that the inhibition was target-specific. Our results demonstrate the potential to identify Mtb DHFR inhibitors with activity against whole cells, and indicate the power of using a recombinant strain of Mtb expressing lower levels of DHFR to facilitate the discovery of antimycobacterial agents. With these new tools, we highlight the folate pathway as a potential target for new drugs to combat the tuberculosis epidemic.  相似文献   

20.
Human infection by Mycobacterium tuberculosis is endemic, with approximately 2 billion infected and is the most common cause of adult death due to an infectious agent. Because of the slow growth rate of M. tuberculosis and risk to researchers, other species of Mycobacterium have been employed as alternative model systems to study human tuberculosis (TB). Mycobacterium marinum may be a good surrogate pathogen, conferring TB-like chronic infections in some fish. Medaka (Oryzias latipes) has been established for over five decades as a laboratory fish model for toxicology, genotoxicity, teratogenesis, carcinogenesis, classical genetics and embryology. We are investigating if medaka might also serve as a host for M. marinum in order to model human TB. We show that both acute and chronic infections are inducible in a dose dependent manner. Colonization of target organs and systemic granuloma formation has been demonstrated through the use of histology. M. marinum expressing green fluorescent protein (Gfp) was used to monitor bacterial colonization of these organs in fresh tissues as well as in intact animals. Moreover, we have employed the See-Through fish line, a variety of medaka devoid of major pigments, to monitor real-time disease progression, in living animals. We have also compared the susceptibility of another prominent fish model, zebrafish (Danio rerio), to our medaka-M. marinum model. We determined the course of infections in zebrafish is significantly more severe than in medaka. Together, these results indicate that the medaka-M. marinum model provides unique advantages for studying chronic mycobacteriosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号