首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Earlier we have shown that regulation of rhythm and strength of the frog heart contractions, mediated by transmitters of the autonomic nervous system, is of the Ca2+-dependent character. In the present work, we studied chronoand inotropic effect of verapamil—an inhibitor of Ca2+-channels of the L-type, of nickel chloride-an inhibitor of Ca2+—channels of the T-type and of Na+,Ca2+exchangers as well as of adrenaline and acetylcholine (ACh) after nickel chloride. It has been found that the intracardially administered NiCh2 at a dose of 0.01 μg/kg produced a sharp fall of amplitude of action potential (AP) and an almost twofold deceleration of heart rate (HR). The intracardiac administration of NiCh2 (0.01 μg/kg) on the background of action of verapamil (6 mg/kg, i/m) led as soon as after 3 min to even more prominent HR deceleration and to further fall of the AP amplitude by more than 50% as compared with norm. An intracardiac administration of adrenaline (0.5 mg/kg) partly restored the cardiac activity. However, preservation of the myocardium electrical activity in such animals was brief and its duration did not exceed several minutes. Administration of Ni2+ on the background of acetylcholine (3.6 mg/kg) led to almost complete cessation of cardiac activity. As soon as 3 min after injection of this agent the HR decreased to 2 contractions/min. On electrograms (EG), the 10-fold fall of the AP amplitude was recorded. To elucidate role of extraand intracellular Ca2+ in regulation of strength of heart contractions, isometric contraction of myocardium preparations was studied in response to action of NiCl2 (10–200 μM), verapamil (70 μM), adrenaline (5 μM), and acetylcholine (0.2 μM) after NiCl2. It has been found that Ni2+ causes a dose-dependent increase of the muscle contraction amplitude. Minimal change of the contraction amplitude (on average, by 14.9% as compared with control) was recorded at a Ni2+ concentration of 100 μM. An increase of Ni2+ in the sample to 200 μM increased the cardiac contraction strength, on average, by 41%. The negative inotropic action of verapamil was essentially reduced by 100 μM Ni2+. Adrenaline added to the sample after Ni2+ produced stimulating effect on the cardiac muscle, with an almost twofold rise of the contraction amplitude. ACh (0.2 μM) decreased the cardiac contraction amplitude, on average, by 56.3%, whereas Ni2+ (200 μM) administered after ACh not only restored, but also stimulated partly the myocardial work. Within several parts of percent there was an increase of such isometric contraction parameters as amplitude of the effort developed by muscle, maximal rate, maximal acceleration, time of semirise and semifall. The obtained experimental results indicate that the functional activity of the frog pacemaker and contractile cardiomyocytes is regulated by Ca2+-dependent mechanisms. Structure of these mechanisms includes the potential-controlled Land T-channels of the plasma membrane as well as Na+,Ca2-exchangers characteristic exclusively of contractile cardiomyocytes. The existence of these differences seems to be due to the cardiomyocyte morphological peculiarities that appeared in evolution at the stage of the functional cell specialization.  相似文献   

2.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

3.
The aims of the present study were twofold: (1) simultaneous determinations of Na(+) transport parameters of erythrocytes from 40 healthy donors and 28 septic patients as assessed by a score of severity of sepsis (SSS), and (2) examination of the correlation between the SSS and specific Na(+) transport abnormalities. Erythrocytes were obtained and loaded with different ionic compositions and cellular Na(+) contents before determination of the near-maximal Na(+) pump rate (Vmax), the physiological extrusion rate of Na(+) (v) and the number of ouabain-binding sites (Bmax). In erythrocytes from septic patients, the cellular Na(+) content was 28% higher (p < 0.001), with no differences in water content compared to erythrocytes from healthy donors. This elevated Na(+) content was accompanied by significantly higher values for Vmax (43%), v (24%) and Bmax (48%) of the Na(+) pump in septic erythrocytes. Moreover, significant positive correlations existed between Vmax and SSS (p = 0.028) and between cellular Na(+) content and SSS (p = 0.005). These data suggest that during sepsis, membrane alterations occur and result in an increased cellular Na(+) content. Active Na(+) transport (Vmax and v) was significantly stimulated, possibly as a consequence of a secondary response to the elevated Na(+) of cells. Both cellular Na(+) and Vmax correlated well with the severity of sepsis, suggesting that these altered transport parameters may reflect the progress of sepsis.  相似文献   

4.
Magnesium sulfate is widely used to prevent seizures in pregnant women with hypertension. The aim of this study was to examine the inhibitory mechanisms of magnesium sulfate in platelet aggregation in vitro. In this study, magnesium sulfate concentration-dependently (0.6–3.0 mM) inhibited platelet aggregation in human platelets stimulated by agonists. Magnesium sulfate (1.5 and 3.0 mM) also concentration-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by thrombin. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by phorbol-12-13-dibutyrate (PDBu, 50 nM). This phosphorylation was markedly inhibited by magnesium sulfate (3.0 mM). Magnesium sulfate (1.5 and 3.0 mM) further inhibited PDBu-stimulated platelet aggregation in human platelets. The thrombin-evoked increase in pHi was markedly inhibited in the presence of magnesium sulfate (3.0 mM). In conclusion, these results indicate that the antiplatelet activity of magnesium sulfate may be involved in the following two pathways: (1) Magnesium sulfate may inhibit the activation of protein kinase C, followed by inhibition of phosphoinositide breakdown and intracellular Ca+2 mobilization, thereby leading to inhibition of the phosphorylation of P47. (2) On the other hand, magnesium sulfate inhibits the Na+/H+ exchanger, leading to reduced intracellular Ca+2 mobilization, and ultimately to inhibition of platelet aggregation and the ATP-release reaction.  相似文献   

5.
6.
7.
One of the protective mechanisms used by plants to survive under conditions of salt stress caused by high NaCl concentration is the removal of Na+ from the cytoplasm. This mechanism involves a number of Na+/H+-antiporter proteins that are localized in plant plasma and vacuolar membranes. Due to the driving force of the electrochemical H+ gradient created by membrane H+-pumps (H+-ATPases and vacuolar H+-pyrophosphatases), Na+/H+-antiporters extrude sodium ions from the cytoplasm in exchange for protons. In this study, we have identified the gene for the barley vacuolar Na+/H+-antiporter HvNHX2 using the RACE (rapid amplification of cDNA ends)-PCR (polymerase chain reaction) technique. It is shown that the identified gene is expressed in roots, stems, and leaves of barley seedlings and that it presumably encodes a 59.6 kD protein composed of 546 amino acid residues. Antibodies against the C-terminal fragment of HvNHX2 were generated. It is shown that the quantity of HvNHX2 in tonoplast vesicles isolated from roots of barley seedlings remains the same, whereas the rate of Na+/H+ exchange across these membranes increases in response to salt stress. The 14-3-3-binding motif Lys-Lys-Glu-Ser-His-Pro (371-376) was detected in the HvNHX2 amino acid sequence, which is suggestive of possible involvement of the 14-3-3 proteins in the regulation of HvNHX2 function.  相似文献   

8.
Summary Hypothetical model based on deficient glutamatergic neurotransmission caused by hyperactive glutamate transport in astrocytes surrounding excitatory synapses in the prefrontal cortex is examined in relation to the aetiology of schizophrenia. The model is consistent with actions of neuroleptics, such as clozapine, in animal experiments and it is strongly supported by recent findings of increased expression of glutamate transporter GLT in prefrontal cortex of patients with schizophrenia. It is proposed that mechanisms regulating glutamate transport be investigated as potential targets for novel classes of neuroactive compounds with neuroleptic characteristics. Development of new efficient techniques designed specifically for the purpose of studying rapid activity-dependent translocation of glutamate transporters and associated molecules such as Na+, K+-ATPase is essential and should be encouraged.  相似文献   

9.
Plant calcium pumps, similarly to animal Ca2+ pumps, belong to the superfamily of P-type ATPase comprising also the plasma membrane H+-ATPase of fungi and plants, Na+/K+ ATPase of animals and H+/K+ ATPase of mammalian gastric mucosa. According to their sensitivity to calmodulin the plant Ca2+-ATPases have been divided into two subgroups: type IIA (homologues of animal SERCA) and type IIB (homologues of animal PMCA). Regardless of the similarities in a protein sequence, the plant Ca2+ pumps differ from those in animals in their cellular localization, structure and sensitivity to inhibitors. Genomic investigations revealed multiplicity of plant Ca2+-ATPases; they are present not only in the plasma membranes and ER but also in membranes of most of the cell compartments, such as vacuole, plastids, nucleus or Golgi apparatus. Studies using yeast mutants made possible the functional and biochemical characterization of individual plant Ca2+-ATMPases. Plant calcium pumps play an essential role in signal transduction pathways, they are responsible for the regulation of [Ca2+] in both cytoplasm and endomembrane compartments. These Ca2+-ATPases appear to be involved in plant adaptation to stress conditions, like salinity, chilling or anoxia.  相似文献   

10.
Summary Calcium binding protein-1 (CaBP1) is a calmodulin like protein shown to modulate Ca2+ channel activities. Here, we explored the functions of long and short spliced CaBP1 variants (L- and S-CaBP1) in modulating stimulus-secretion coupling in primary cultured bovine chromaffin cells. L- and S-CaBP1 were cloned from rat brain and fused with yellow fluorescent protein at the C-terminal. When expressed in chromaffin cells, wild-type L- and S-CaBP1s could be found in the cytosol, plasma membrane and a perinuclear region; in contrast, the myristoylation-deficient mutants were not found in the membrane. More than 20 and 70% of Na+ and Ca2+ currents, respectively, were inhibited by wild-type isoforms but not myristoylation-deficient mutants. The [Ca2+] i response evoked by high K+ buffer and the exocytosis elicited by membrane depolarizations were inhibited only by wild-type isoforms. Neuronal Ca2+ sensor-1 and CaBP5, both are calmodulin-like proteins, did not affect Na+, Ca2+ currents, and exocytosis. When expressed in cultured cortical neurons, the [Ca2+] i responses elicited by high-K+ depolarization were inhibited by CaBP1 isoforms. In HEK293T cells cotransfected with N-type Ca2+ channel and L-CaBP1, the current was reduced and activation curve was shifted positively. These results demonstrate the importance of CaBP1s in modulating the stimulus-secretion coupling in excitable cells. M.-L. Chen and Y.-C. Chen contributed equally to this study  相似文献   

11.
The Ca2+-conducting pathway of myocytes isolated from the cricket lateral oviduct was investigated by means of the whole-cell patch clamp technique. In voltage-clamp configuration, two types of whole cell inward currents were identified. One was voltage-dependent, initially activated at –40 mV and reaching a maximum at 10 mV with the use of 140 mM Cs2+-aspartate in the patch pipette and normal saline in the bath solution. Replacement of the external Ca2+ with Ba2+ slowed the current decay. Increasing the external Ca2+ or Ba2+ concentration increased the amplitude of the inward current and the current–voltage (I–V) relationship was shifted as expected from a screening effect on negative surface charges. The inward current could be carried by Na+ in the absence of extracellular Ca2+. Current carried by Na+ (I Na) was almost completely blocked by the dihydropyridine Ca2+ channel antagonist, nifedipine, suggesting that the I Na is through voltage-dependent L-type Ca2+ channels. The other inward current is voltage-independent and its I–V relationship was linear between –100 mV to 0 mV with a slight inward rectification at more hyperpolarizing membrane potentials when 140 mM Cs+-aspartate and 140 mM Na+-gluconate were used in the patch pipette and in the bath solution, respectively. A similar current was observed even when the external Na+ was replaced with an equimolar amount of K+ or Cs+, or 50 mM Ca2+ or Ba2+. When the osmolarity of the bath solution was reduced by removing mannitol from the bath solution, the inward current became larger at negative potentials. The I–V relationship for the current evoked by the hypotonic solution also showed a linear relationship between –100 mV to 0 mV. Bath application of Gd3+ (10 M) decreased the inward current activated by membrane hyperpolarization. These results clearly indicate that the majority of current activated by a membrane hyperpolarization is through a stretch-activated Ca2+-permeable nonselective cation channel (NSCC). Here, for the first time, we have identified voltage-dependent L-type Ca2+ channel and stretch-activated Ca2+-permeable NSCCs from enzymatically isolated muscle cells of the cricket using the whole-cell patch clamp recording technique.Abbreviations I Ca Ca2+ current - I Na Na+ current - I–V current–voltage - NSCC nonselective cation channel Communicated by G. Heldmaier  相似文献   

12.
In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H+-and Ca2+-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulatory mechanisms of these pumps. In plant plasma membrane H+- and Ca2+-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism of autoinhibition is discussed.  相似文献   

13.
The gene HvNHX3 encoding a new isoform of vacuolar Na+/H+-antiporter was identified in barley. This gene is expressed in roots and leaves of barley seedlings, and it encodes a protein consisting of 541 amino acid residues with pre-dicted molecular weight 59.7 kDa. It was found that by its amino acid sequence HvNHX3 is closest to the Na+/H+-antiporter HbNHX1 of wild type from Hordeum brevisibulatum that grows on salt-marsh (solonchak) soils (95% homology). The expression of HvNHX3 during salt stress is increased several-fold in roots and leaves of barley seedlings. At the same time, the amount of HvNHX3 protein in roots does not change, but in leaves it increases significantly. It was shown using HvNHX3 immunolocalization in roots that this protein is present in all tissues, but in control plants it was clustered and in experimental plants after salt stress it was visualized as small granules. It has been proposed that HvNHX3 is converted into active form during declusterization. The conversion of HvNHX3 into its active form along with its quantitative increase in leaves during salt stress activates Na+/H+-exchange across the vacuolar membrane and Na+ release from cytoplasm, and, as a consequence, an increase of salt stress tolerance.  相似文献   

14.
Crush syndrome (CS) results from severe traumatic damage to the organism that is characterized by stress, acute homeostatic failure of the tissues, and myoglobinuria with severe intoxication. This leads to an acute impairment of kidneys and heart. The peripheral and central nervous systems are also the subject of significant changes in CS. Na+, K+-ATPase is a critical enzyme in neuron that is essential for the regulation of neuronal membrane potential, cell volume as well as transmembrane fluxes of Ca++ and Excitatory Amino Acids. In the present study, Na+, K+-ATPase activity of rat brain regions [Olfactory lobes (OL), Cerebral cortex (CC), Cerebellum (CL), and Medulla oblongata (MO)] during CS was investigated. Experimental model of CS in albino rats was induced by 2-h of compression followed by 2, 24, and 48-h of decompression of femoral muscle tissue. In this study, we have observed elevation in Na+, K+-ATPase activity above normal/control levels in all parts of brain (OL: 34.4%; CC: 1.0%; CL: 3.3% and MO: 45%) during 2-h compression in comparison to controls.  相似文献   

15.
Relevant Ca2+ pools and fluxes in H9c2 cells have been studied using fluorescent indicators and Ca2+-mobilizing agents. Vasopressin produced a cytoplasmic Ca2+ peak with half-maximal effective concentration of 6 nM, whereas thapsigargin-induced Ca2+ increase showed half-maximal effect at 3 nM. Depolarization of the mitochondrial inner membrane by protonophore was also associated with an increase in cytoplasmic Ca2+. Ionomycin induced a small and sustained depolarization, while thapsigargin had a small but transient effect. The thapsigargin-sensitive Ca2+ pool was also sensitive to ionomycin, whereas the protonophore-sensitive Ca2+ pool was not. The vasopressin-induced cytoplasmic Ca2+ signal, which caused a reversible discharge of the sarco-endoplasmic reticulum Ca2+ pool, was sensed as a mitochondrial Ca2+ peak but was unaffected by the permeability transition pore inhibitor cyclosporin A. The mitochondrial Ca2+ peak was affected by cyclosporin A when the Ca2+ signal was induced by irreversible discharge of the intracellular Ca2+ pool, i.e., adding thapsigargin. These observations indicate that the mitochondria interpret the cytoplasmic Ca2+ signals generated in the reticular store.  相似文献   

16.
Our understanding of vascular endothelial cell physiology is based on studies of endothelial cells cultured from various vascular beds of different species for varying periods of time. Systematic analysis of the properties of endothelial cells from different parts of the vasculature is lacking. Here, we compare Ca2+ homeostasis in primary cultures of endothelial cells from human internal mammary artery and saphenous vein and how this is modified by hypoxia, an inevitable consequence of bypass grafting (2.5% O2, 24 h). Basal [Ca2+] i and store depletion-mediated Ca2+ entry were significantly different between the two cell types, yet agonist (ATP)–mediated mobilization from endoplasmic reticulum stores was similar. Hypoxia potentiated agonist-evoked responses in arterial, but not venous, cells but augmented store depletion-mediated Ca2+ entry only in venous cells. Clearly, Ca2+ signaling and its remodeling by hypoxia are strikingly different in arterial vs. venous endothelial cells. Our data have important implications for the interpretation of data obtained from endothelial cells of varying sources.  相似文献   

17.
A kinetic model for the membrane Ca2+-ATPase is considered. The catalytic cycle in the model is extended by enzyme auto-inhibition and by oscillatory calcium influx. It is shown that the conductive enzyme activity can be registered as damped or sustained Ca2+ pulses similar to observed experimentally. It is shown that frequency variations in Ca2+ oscillatory influx induce changes of pulsating enzyme activity. Encoding is observed for the signal frequency into a number of fixed levels of sustained pulses in the enzyme activity. At certain calcium signal frequencies, the calculated Ca2+-ATPase conductivity demonstrates chaotic multi-level pulses, similar to those observed experimentally.__________Translated from Biokhimiya, Vol. 70, No. 4, 2005, pp. 539–544.Original Russian Text Copyright © 2005 by Goldstein, Mayevsky, Zakrjevskaya.  相似文献   

18.
The review considers Ca2+-messenger systems in primitive multicellulars (sponges and hydrozoa organisms). Analysis is performed of Ca2+ participation in regulation of early development of the organisms, their mobility, metamorphosis, chemoreception, and some other functions.  相似文献   

19.
To develop a salt-tolerant upland rice cultivar (Oryza sativa L.), OsNHX1, a vacuolar-type Na+/H+ antiporter gene from rice was transferred into the genome of an upland rice cultivar (IRAT109), using an Agrobacterium-mediated method. Seven independent transgenic calli lines were identified by polymerase chain reaction (PCR) analysis. These 35S::OsNHX1 transgenic plants displayed a little accelerated growth during seedling stage but showed delayed flowering time and a slight growth retardation phenotype during late vegetative stage, suggesting that the OsNHX1 has a novel function in plant development. Northern and western blot analyses showed that the expression levels of OsNHX1 mRNA and protein in the leaves of three independent transgenic plant lines were significantly higher than in the leaves of wild type (WT) plants. T2 generation plants exhibited increased salt tolerance, showing delayed appearance and development of damage or death caused by salt stress, as well as improved recovery upon removal from this condition. Several physiological traits, such as increased Na+ content, and decreased osmotic potential in transgenic plants grown in high saline concentrations, further indicated that the transgenic plants had enhanced salt tolerance. Our results suggest the potential use of these transgenic plants for further agricultural applications in saline soil.  相似文献   

20.
The effect of ANG II on pHi, [Ca2+]i and cell volume was investigated in T84 cells, a cell line originated from colon epithelium, using the probes BCECF-AM, Fluo 4-AM and acridine orange, respectively. The recovery rate of pHi via the Na+/H+ exchanger was examined in the first 2 min following the acidification of pHi with a NH4Cl pulse. In the control situation, the pHi recovery rate was 0.118 ± 0.001 (n = 52) pH units/min and ANG II (10−12 M or 10−9 M) increased this value (by 106% or 32%, respectively) but ANG II (10−7 M) decreased it to 47%. The control [Ca2+]i was 99 ± 4 (n = 45) nM and ANG II increased this value in a dose-dependent manner. The ANG II effects on cell volume were minor and late and should not interfere in the measurements of pHi recovery and [Ca2+]i. To document the signaling pathways in the hormonal effects we used: Staurosporine (a PKC inhibitor), W13 (a calcium-dependent calmodulin antagonist), H89 (a PKA inhibitor) or Econazole (an inhibitor of cytochrome P450 epoxygenase). Our results indicate that the biphasic effect of ANG II on Na+/H+ exchanger is a cAMP-independent mechanism and is the result of: 1) stimulation of the exchanger by PKC signaling pathway activation (at 10−12 – 10−7 M ANG II) and by increases of [Ca2+]i in the lower range (at 10−12 M ANG II) and 2) inhibition of the exchanger at high [Ca2+]i levels (at 10−9 – 10−7 M ANG II) through cytochrome P450 epoxygenase-dependent metabolites of the arachidonic acid signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号