首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Precursor phenotype of lymphokine-activated killer cells in the mouse   总被引:4,自引:0,他引:4  
Lymphokine-activated killer (LAK) activity has been proposed to functionally differ from natural killer (NK) activity largely on the basis of a broader target cell spectrum and different kinetics of response to interleukin 2 (IL 2). Similarly, it has been proposed that the precursor cells for LAK activity are phenotypically distinct from NK cells. In most precursor studies, phenotype comparisons have been made between fresh NK cells and LAK cells which have been generated by 3 to 5 days of culture in IL 2. In the present study, we utilized positive selection with monoclonal antibodies to characterize the surface phenotype of precursor cells which give rise to rIL 2-augmented NK activity within 24 hr and to classically generated LAK activity which appears after 3 to 5 days of culture in rIL 2. The results demonstrated that highly purified (93 to 95%) Lyt-2+ or L3T4+ T lymphocytes were unable to generate appreciable amounts of either augmented NK activity or LAK activity when cultured with rIL 2, whereas the highly purified (98%) Lyt-2-, L3T4-, asialo GM1+ lymphocyte subset gave rise to both augmented NK and LAK activities. These findings demonstrate that both augmented NK and LAK activities can arise from precursors expressing the same phenotype. Overall, the results suggest that NK cells in mouse spleen constitute a major precursor component for the generation of LAK activity from that organ.  相似文献   

2.
Summary We developed a monoclonal antibody (mAb) 211, which recognizes the precursors in peripheral blood of lymphokine-activated killer cells (LAK) induced by recombinant interleukin-2 (rIL-2). In conjunction with complement mAb 211 also eliminates natural killer cells (NK) and a majority of the cytotoxic T lymphocytes. B cells and monocytes do not express the 211 antigen. Since mAb 211 recognized such a large percentage of peripheral blood lymphocytes we examined which 211+ subpopulation was the predominant precursor of rIL-2-induced LAK cells using two-color fluoresence-activated cell sorting (fluorescein-conjugated 211 mAb plus phycoerythrin-CD11b). This method identified the 211+/ CD11b+ population as the predominant phenotype of the rIL-2-induced LAK precursor. In addition, we directly compared the phenotype of the LAK precursor induced by delectinated T-cell growth factor (TCGF) to that induced by rIL-2. The 211-depleted population, which was devoid of NK cells and LAK precursors (inducible by rIL-2), was capable of generating LAK activity when TCGF was used as the source of lymphokine. LAK cells induced by TCGF from the 211-depleted population lysed a fresh sarcoma and an NK-resistant cultured melanoma tumor target but not the Daudi cell line, which was lysed by rIL-2-induced LAK cells. Lymphoid subpopulations, depleted using NKH1a mAb, behaved similarly, generating high levels of lysis against the two solid tumor targets when cultured with TCGF but not with rIL-2. CD 3-depleted populations showed enrichment for LAK precursors using either rIL-2 or TCGF. These results indicate that while rIL-2-induced LAK precursors cannot be separated from cells with NK activity, TCGF-induced LAK cells can be generated from populations of peripheral blood mononuclear cells without NK activity.  相似文献   

3.
The in vitro incubation of B6 splenocytes with purified, mouse rIL-4 for 4 to 5 days was sufficient to generate lymphokine-activated killer (LAK) activity. In addition, rIL-4 augmented LAK cytotoxic activity when combined with rIL-2, as measured in a 4 h 51Cr-release assay against fresh, syngeneic MCA-sarcoma (MCA-102 and MCA-105) cells. Interestingly, this augmentation was not observed against the cultured YAC-1 target. LAK generation and augmentation of cytotoxicity by rIL-4 was species-specific, because human rIL-4 (up to 20,000 U/ml) failed to elicit these effects in the mouse splenocyte cultures. When 5-day B6 LAK cells (splenocytes incubated in rIL-2 at 1000 U/ml for 5 days) were split and recultured in the combination of rIL-2 plus rIL-4 for 4 additional days at least a twofold greater expansion in cell number resulted compared to similar cells cultured in either rIL-2 or rIL-4 alone. Moreover, LAK cells expanded in rIL-2 plus rIL-4 exhibited substantial increases in in vitro cytolytic activity (on a per cell basis) against MCA-102 and MCA-105 sarcoma cells, but not against YAC-1 targets. FACS analysis or negative selection using Lyt-2 or NK-1.1 mAb plus C revealed no differences in effector phenotype(s) of LAK cells expanded in rIL-2 alone compared to rIL-2 plus rIL-4 to account for the differences observed in both expansion and cytolytic activity by rIL-4. The majority of cells was Thy-1+, Lyt-2+, T3+, and ASGM-1+. However, a marked increase in the granule-associated serine esterase, BLT-E, was found only in LAK cells expanded in the combination of both lymphokines. Collectively, these studies show that rIL-4 has potent regulatory activities on splenic LAK generation, expansion, and cytotoxic function in the mouse.  相似文献   

4.
Heterogeneity of human natural killer cell populations.   总被引:1,自引:0,他引:1  
Natural killing (NK) in human donors was determined by the ability of peripheral blood subpopulations to lyse the myeloid target, K562, in a 2 to 4 hr 51Cr release assay. The most active cell was a non-T cell which passed through nylon columns (representing 10 to 25% of column passed cells). A second column passed cell population, with characteristics of T lymphocytes (75 to 90% of column passed cells), was also capable of mediating natural killing. Non-T cells which were retained by the nylon columns (45 to 55% of adherent cells) lacked NK activity. However, nylon adherent T cells (45 to 55% of adherent cells) were consistently active in NK assays, illustrating an important subset of NK effector cell often overlooked. Both column passed and adherent T cells were further separated according to their ability to bind IgG or IgM immune complexes, showing that those mediating NK have receptors for IgG (Tγ+) but not for IgM (Tμ+).  相似文献   

5.
IL-2-stimulated human lymphocytes, referred to as lymphokine-activated killer (LAK) cells, can develop a broad range of lytic activity against fresh tumor cells and cultured tumor cell lines. IL-1, a pleiotropic cytokine shown to synergize with IL-2 on LAK induction, is endogenously synthesized and secreted by LAK cells. Immunoblot analysis demonstrated that IL-2-stimulated PBL produced the 31- to 34-kDa pro-molecules of IL-1 within 24 h and maintained their expression for at least 96 h. The role of secreted IL-1 has been examined using rIL-1R antagonist (IL-1ra). The addition of IL-1ra to LAK activation culture resulted in dose-dependent inhibited lytic activity, which was more apparent in LAK cells cultured with higher doses of IL-2. However, IL-1ra had no effect on proliferative responses elicited in LAK cells by IL-2. Moreover, when IL-1 binding was blocked by IL-1ra, the expression of the IL-2R p55 subunit was reduced compared with control LAK cells. The effect of IL-1 binding blockade on expression of other cytokine mRNA was further examined by polymerase chain reaction analysis, and, specifically, inhibition of both TNF-alpha and TNF-beta mRNA expression by IL-1ra was observed in PBL stimulated with IL-2. The reduced biologic activity of TNF in culture supernatants correlated well with the inhibition of mRNA expression. These findings suggest that autocrine/paracrine IL-1 is involved in the initial generation of LAK activity and, in particular, that TNF expression could be induced via an IL-1 autocrine pathway.  相似文献   

6.
Summary We compared the ability of murine lymphokine-activated killer (LAK) cells grown in either a serum-supplemented standard medium (MEM plus fetal calf serum) or a serum-free medium (AIM-V) to lyse a range of tumour targets. LAK cells grown in either of the media killed a cultured murine tumour line (YAC-1 lymphoma) well and spared syngeneic self cells (concanavalin-A-stimulated splenocytes). However, a striking difference was noted in the ability of LAK cells grown in MEM plus fetal calf serum (as opposed to AIM-V) to kill modified self cells (trinitrophenol-modified concanavalin A blasts); LAK cells grown in the former always killed modified self cells better than those grown in the latter. This pattern held under a broad range of experimental manipulations and was found to be related to a relative increase in CD3-bearing LAK cells grown in the standard medium. These data suggest that the two media cannot be used interchangeably. This conclusion may have clinical implications for the use of LAK cells, as animal studies have been done using LAK cells generated in serum-containing medium and clinical studies have used LAK cells generated in serum-free medium.  相似文献   

7.
The present investigation demonstrates that leukoregulin, a cytokine secreted by natural killer (NK) lymphocytes up-regulates the sensitivity of tumor cells to lymphokine-activated killer (LAK) cell cytotoxicity. It has been previously established that leukoregulin increases the sensitivity of sarcoma, carcinoma and leukemia cells to natural killer (NK) cell cytotoxicity. Tumor cells were treated with leukoregulin for 1 h at 37 degrees C and tested for sensitivity to NK and LAK cytotoxicity in a 4-h chromium-release assay. NK-resistant Daudi, QGU and C4-1 human cervical carcinoma cells became sensitive to NK cytotoxicity after leukoregulin treatment, and their sensitivity to LAK was increased two- to sixfold. Y-79 retinoblastoma cells, which are moderately sensitive to NK and very sensitive to LAK, became increasingly sensitive (two- to four-fold) to both NK and LAK cell cytotoxicity. Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF), recombinant interleukin-1 (alpha and beta), recombinant interferon gamma, recombinant tumor necrosis factor or combinations of the latter two failed to up-regulate tumor cell sensitivity to NK and LAK cell cytotoxicity. However, treatment with recombinant interferon gamma for 16-18 h, GM-CSF and interleukin-1 beta for 1 h induced a state of target cell resistance to both NK and LAK cell cytotoxicity. Leukoregulin may have an important physiological function in modulating NK and LAK cell cytotoxicity by increasing the sensitivity of target cells to these natural cellular immunocytotoxicity mechanisms.  相似文献   

8.
Summary The natural killer (NK) and lymphokine-activated killer (LAK) cell activities of peripheral blood lymphocytes from chronic myeloid leukemia (CML) patients in remission and from healthy donors have been studied. Regression analysis to compare both cytotoxic responses in individual donors and the frequency of LAK cell precursors was also carried out. About 42% of CML patients in remission showed low NK activity (less than the mean percentage NK activity of healthy donors — 2 SD) and were categorised as low NK responders. The stage of remission or the drugs used to bring about remission did not influence the NK status. The LAK activity of low NK as well as normal NK responder CML patients was significantly low against the NK-sensitive K562 cell line and the NK-resistant VIP (melanoma) and T-24 (bladder carcinoma) tumor targets, as assessed by linear regression analysis. Allogeneic leukemic cells were more resistant to killing, especially by patients' LAK cells. The frequency analysis of LAK cell precursors revealed a significant reduction in the LAK cell progenitor frequency in CML patients in remission.  相似文献   

9.
We have generated lymphokine-activated killer (LAK) cells from human thymocytes in order to assess the relationship between LAK cells and T cells. Fresh thymocytes lack natural cytotoxic activity, and cytotoxicity cannot be stimulated by short term (1 hr) incubation with interferon or recombinant interleukin 2 (rIL-2). In addition, thymocytes are phenotypically devoid of cells bearing the natural killer (NK)-associated markers cluster designation (CD) 16 and NKH-1. After culture for 5 to 8 days with rIL-2, thymocytes display high levels of cytotoxic activity against both NK-sensitive and NK-resistant targets. Thymocytes require slightly more IL-2 than do peripheral blood lymphocytes to generate LAK activity. We have examined the phenotype of the thymocyte LAK precursor and effector cells. Thymocyte LAK precursors are of low to medium density, CD1-negative, and predominantly CD3-negative. Although CD3-positive cells proliferate in response to rIL-2, they are low in cytolytic capabilities. The effector cells, like the LAK precursors, are low to medium density lymphocytes. The cytotoxic cells are predominantly CD3-negative, and cytotoxic activity cannot be blocked with the use of anti-CD3 monoclonal antibodies. The effector cells also lack most NK-associated markers (HNK-1, and the CD16 markers Leu-11b and B73.1) but possess the NK-associated marker NKH-1 (N901). The responsive cell appears to be at a very early stage of thymic development, and it does not appear to either require or express the CD3-T cell receptor complex.  相似文献   

10.
To study the effect of IL-6 on the development of cytotoxic cells, we examined lymphokine-activated killer (LAK) activity generated from human nonadherent PBL. Addition of rIL-6 at the initiation of 5-day PBL cultures significantly increases LAK activity in the presence of low concentrations (between 5 and 25 u/ml) of rIL-2. RIL-6 alone induces no PBL LAK activity but at doses as low as 0.8 u/ml rIL-6 enhances LAK activity with optimal enhancement of LAK at 5.0 u/ml of rIL-6. This enhancement is independent of effects on cells growth as rIL-6 did not affect the cell recovery of PBL cultured in rIL-2. RIL-6-enhanced LAK is mediated by the same type of effector cells as those of LAK from rIL-2 alone with effector cells primarily generated from large granular CD3-negative E rosetting lymphocytes. RIL-6 does not change the time course of LAK development and pretreatment of PBL with rIL-6 has no effect on the PBL response to subsequent rIL-2 induction of LAK. Addition of rIL-6 to LAK cultures 2 hr before the cytotoxicity assay shows equal enhancement as addition at the initiation of the culture. However, rIL-6 requires the presence of both rIL-2 and another factor in the supernatant from LAK cultures in order to enhance LAK. Our results indicate that IL-6 can modulate LAK activity at a very late stage of LAK development, and that the enhancement by IL-6 is dependent on the presence of IL-2 and another soluble factor generated during rIL-2 culture.  相似文献   

11.
Summary Incubation of peripheral blood mononuclear cells with interleukin-2 (IL-2) results in the release of a factor which is cytostatic and cytotoxic both to tumor cell lines (A375M, A375P, C480, MCF-7, Hey) and fresh tumor cells (in the human tumor cloning assay), including breast cancer, colon cancer, melanoma, myeloma and ovarian cancer. The factor cannot be detected in a 4-h chromium-release assay, but is best demonstrated after tumor cells have been to it for exposed 3 days. The factor is not cytotoxic to normal peripheral blood leukocytes or normal fibroblasts, and is not toxic to certain targets sensitive to lymphokine-activated killer (LAK) cells, such as K562 and Daudi cells. The factor is diffusible, non-dialyzable, relatively stable to heat and acid and does not contain appreciable amounts of targets resistant to interferon- and , tumor necrosis factor and interleukin-1. The data suggest that there are several mechanisms of LAK cell activity against tumor cells including one which requires direct interaction of LAK and tumor cells and one which is mediated by LAK cell supernatant. The former is detected by 4-h chromium release while the latter is not.Supported by a grant from the Arizona Disease Research Commission and by Grants CA-17094 and CA-23074 from the National Institute of Health  相似文献   

12.
Depleting monocytes from human peripheral blood mononuclear cells (PBMC) enhances the in vitro activation of lymphokine-activated killer (LAK) cells. To determine if monocytes also altered LAK-cell expansion, we evaluated two methods of depleting monocytes from PBMC: nylon wool adherence (NWA) and phenylalanine methyl ester (PME) treatment. Both methods of depleting monocytes enhanced interleukin-2 (IL-2) driven, LAK-cell expansion; LAK expansion, however, was significantly greater after depletion with NWA than after PME. LAK cytotoxicity after NWA and PME depletion was equivalent. The degree of monocyte depletion, determined by evaluating morphology and the number of Leu-M3 (CD14) positive cells, and the proliferation of Leu 19 (CD56), OKT-3 (CD3), Leu2 (CD8), and Leu 3a (CD4) positive cells was also equivalent. Exposure of IL-2 activated cells to PME did not alter their cytotoxic activity. However, sequential treatment of PBMC with NWA, then PME, or with PME and then NWA, resulted in reduced expansion. This reduction in expansion was similar to PBMC treated with PME alone. Exposure of PME-depleted cells to nylon wool or to supernatants obtained from cells adherent to nylon wool further decreased LAK expansion relative to cells treated with NWA alone. We conclude that even at relatively low cell density, human monocytes markedly inhibit LAK-cell expansion in IL-2 driven PBMC cultures. Further, depletion of monocytes by NWA adherence is more effective than by treatment with PME, possibly due to subtle cellular damage induced by this latter treatment. These findings have implication for the in vitro and in vivo generation of LAK-cells by IL-2.  相似文献   

13.
It is possible to generate high levels of lymphokine-activated killer (LAK) activity in short-term culture from cells enriched for natural killer (NK) activity. To determine whether LAK activity can also be generated from non-NK cells, we have depleted peripheral blood lymphocytes (PBL) of NK cells prior to culture with IL-2. NK activity in PBL is correlated with the intensity of staining with the lysosomotropic vital dye quinacrine. Quinacrine dim PBL, which are devoid of lytic NK cells, are capable of developing LAK activity following culture with IL-2. We have also separated PBL using the NK-associated NKH-1 marker. Depleting NKH-1+ cells eliminates NK activity but the ability to develop LAK activity is retained. NKH-1-depleted cells generate less LAK activity than unseparated or NKH-1-positive cells and do not proliferate as well as unseparated cells to IL-2. When NK-depleted cells are subsequently examined for the expression of the NKH-1 antigen, this marker is absent from most cells at Day 3 of IL-1 culture, but is expressed on an increasing number of cells by Days 6-8. These results suggest that LAK derived from non-NK cells is functionally and phenotypically similar to LAK from PBL-containing NK cells, and may be the result of the activation of an NK precursor population.  相似文献   

14.
Summary Little is known regarding the effectors of lymphokine-activated killer activity. Lysosomotropic agents such as quinacrine can be used to positively sort for lysosome rich cells in natural killer (NK) cell populations. We therefore decided to use this agent to sort lymphokine-activated killer (LAK) cells to characterize their lysosomal content. We found that the positively sorted population contained all the LAK activity, i.e., lysis of NK-resistant tumor cells (B16 melanoma cell line), with the negatively sorted cells having no killing activity. Therefore separation of interleukin-2-incubated cells for LAK activity could be accomplished using sorting after quinacrine staining. The treatment of positively sorted LAK cell populations with L-leucine methyl ester, a lysosomotropic dye which inhibits killing by lysosome rich cells, caused abrogation of killing of the B16 tumor by the treated populations. Single cell conjugate assays were also done on these sorted cells, with positively sorted cells forming the highest and negatively sorted cells the lowest percent of conjugates. Our data therefore indicates the important role of lysosome rich cells in the LAK cell population in the murine system.This work was supported by NIH grants R01 CA42962 and K04 CA0122, and by intramural funds from the Norris Cancer Center  相似文献   

15.
We have previously reported that inoculating CD2F1 mice intraperitoneally with five doses of 2 x 10(7) inactivated Candida albicans (CA) cells was associated with the induction of lymphokine-activated killer (LAK)-like effectors. In this study we investigated the ability of some purified cell wall components of CA (CA-CW) to induce LAK-like cells in vivo. Multiple administrations of glucan ghost (GG), a mannoprotein mixture (MP) and a low-protein mannan fraction (M) at variance with whole CA did not induce LAK-like cells in the peritoneal cavity. However, the broad-spectrum antitumor cytotoxicity induced by CA could be recalled to a high level by a booster dose of MP and M, but not GG, given up to 70 days after the multiple CA-treatment. This induced cytotoxicity was maximum when the booster was given on Day +14 after CA-treatment and minimum on Day +70. In CA-treated mice, inoculated on Day +30 with CA or MP, LAK-like cytotoxicity was already significantly increased 4 hr after the booster, but the maximum value was reached at 24 hr. Anti-mannan antibodies did not interfere with LAK-like cells induction by CA because splenectomy before CA-treatment or passive administration of anti-mannan antibodies had no effect on the rapid activation of cytotoxicity by CA or a booster dose of MP. Administration of recombinant human interleukin-2 (rhIL-2) to CA-treated mice induced a higher level of NK activity than that induced by the same dose in untreated control mice, but did not activate LAK-like effectors. The results indicate that LAK-like effectors are easily generated in the peritoneal cavity by a booster with a defined antigenic constituent of CA cell wall for a long period in CA-sensitized mice.  相似文献   

16.
Summary The co-culture of human peripheral blood mononuclear cells (PBMC) with high concentrations of interleukin 2 normally generates lymphokine-activated killer (LAK) cells capable of indiscriminate lysis of tumor targets. However, the addition of certain cell-line-derived tumor cells to the LAK generation cultures within the first 48 h of culture initiation resulted in the suppression of the LAK cytotoxicity measured after 3–4 days of culture. Suppression could be achieved with tumor cell:PBMC ratios as low as 1:50 when tumor cells were derived from melanoma and colorectal cancer (G361, COLO320, HT-29), but suppression was not observed with cells from the breast cancer cell line SKBr3. No suppression of LAK generation was observed with normal epithelial cells from colon or breast, with autologous or allogeneic lymphoblasts, or with allogeneic vascular endothelial cells. Suppression was independent of the removal of adherent cells from PBMC, could not be prevented by indomethacin and was not attributable to interleukin 2 absorption/adsorption by tumor cells. The suppressive activity of some tumor cells could be augmented by preculture in recombinant gamma interferon. Serum-free supernatants from G361, COLO320 and HT-29 (but not SKBr3 or endothelial cells) were also highly suppressive towards the generation of LAK cells. The elaboration by tumor cells of fractors capable of inhibiting LAK generation may partially explain the failure of LAK/interleukin 2 therapy in some experimental and clinical protocols.  相似文献   

17.
The in vitro effect of lithium on lymphokine-activated killer cell (LAK) activity and its in vivo antitumor growth were observed. LAK activity was enhanced when LiCl was added during LAK cell induction, and this enhancement was observed both in human peripheral blood mononuclear cell and in mouse splenocytes used as LAK precursors. Cholera toxin, which can increase intracellular levels of cAMP, decreased LAK cell activity. However, lithium partially reversed this inhibitory effect, indicating that lithium increased LAK cell activity by decreasing cAMP levels. D-Sphingosine, an inhibitor of protein kinase C, and EGTA, a calcium chelator, both inhibited the LAK cell activity. However, their inhibitory effects could not be reversed by lithium because lithium was added in the culture in combination with one of these inhibitors during LAK cell induction. By using slot blot analysis, the effect of lithium on the expression of tumor necrosis factor-alpha mRNA of LAK cells was analyzed. Lithium increased the level of tumor necrosis factor-alpha mRNA when both lithium and interleukin 2 were added to induce LAK cells. The in vivo antitumor effect of lithium has also been studied. Using a mouse melanoma experimental model, the effect of lithium on tumor growth was also observed. Both lithium alone and interleukin 2/LAK had an antitumor effect, whereas the treatment of interleukin 2/LAK in combination with lithium had the strongest inhibitory effect on tumor growth, since this treatment resulted in reduction of tumor size and prolongation of survival in tumor-bearing mice. Therefore, it is hopeful that lithium can be used as a new immunomodulator for cancer immunotherapy and immune diseases.  相似文献   

18.
The induction of lymphokine-activated killer (LAK) cells against fresh human leukemia cells was investigated. Two thirds of the 62 leukemias examined were susceptible to the lytic effect of allogeneic IL-2 induced LAK cells in vitro. No substantial differences could be detected between myeloid or lymphoid leukemias or with regard to the FAB subtype or the immunophenotype. Culturing mononuclear cells from peripheral blood or bone marrow of leukemia patients with IL-2 resulted in an expansion of residual large granular lymphocytes and development of cytotoxic activity. The combination of IL-2 with IFN-gamma or the presence of tumor cells during the activation process led to an enhancement of LAK cell cytotoxicity. These results suggest that LAK cells may be useful in the treatment of leukemia.  相似文献   

19.
Combinations of chemotherapy and interleukin-2 (IL-2) aimed at improving therapeutic efficacy in cancer patients have generally proved disappointing. Although chemotherapy blocks tumor growth and sometimes boosts immune functions, most drugs are immunosuppressive, at least transiently. Therefore, it is reasonable to assume that maximal exploitation of the immunostimulatory and antitumor activity of both modalities requires careful coordination of chemotherapy and IL-2 timing. We analyzed the temporal effect of 5-fluorouracil (5-FU, 100–120 mg/kg), cyclophosphamide (CY, 100 mg/kg), Adriamycin (8 mg/kg) and dacarbazine (100 mg/kg) on the activation of natural killer/lymphokine-activated killer (NK/LAK) cells by IL-2 in several strains of euthymic mice and in athymic nude mice. Following in vivo or in vitro exposure to IL-2 1–15 days after chemotherapy, the total lytic activity of the spleen and the number of LAK precursors (LAK-p) were measured. In euthymic mice injected with IL-2 (5×104 Cetus units twice daily for 4–5 days), 5-FU augmented (up to 37-fold, days 1–9) and CY reduced (up to day 6) LAK activity, as compared with that in the IL-2 control. In bulk cultures containing IL-2 (1000 CU/ml, 3–4 days), both 5-FU and CY reduced LAK activity of euthymic mice splenocytes for up to 6 days after chemotherapy, which was followed on day 9 by full recovery. In splenocytes of nude mice, 5-FU increased and CY diminished LAK activation in bulk cultures, starting 3 days after chemotherapy. In athymic mice, 5-FU markedly augmented the total number of LAK-p/spleen (up to 30-fold, days 3–9), as determined by limiting-dilution cultures with IL-2 (for 7–8 days). In euthymic mice, in contrast, LAK-p levels decreased for up to 6–9 days after treatment with 5-FU, Adriamycin or dacarbazine, later recovering to pretreatment levels, whereas CY markedly increased LAK-p (up to 15-fold) when administered 6–12 days before limiting-dilution culture initiation. The effect of chemotherapy on LAK and NK activity was essentially similar. In other experiments, a subset of asialoGM1-LAK-p was found in the spleens of 5-FU-treated mice, but not in untreated mice. Our results suggest that the immunomodulatory effect of chemotherapy on NK/LAK activity in mice is variable and largely depends on the drug itself, the interval between chemotherapy and IL-2 administration, the strain of mice and the assay used.  相似文献   

20.
Plastic-adherent lymphokine-activated natural killer (LANK) cells were generated from nylon wool-nonadherent murine splenocytes cultured in recombinant interleukin-2 (IL-2). Under such conditions, adherent lymphokine-activated killer cells capable of killing natural killer (NK)-resistant targets were not generated. Adherent LANK cells proliferated rapidly and closely resembled NK cells in their morphology, cytotoxic reactivity, and surface marker expression. Mice with severe combined immunodeficiency (scid) were used to generate adherent LANK cells to define the role of T cells in LANK cell development. Scid lymphocytes responded to IL-2 by becoming adherent LANK cells with potent NK-like activity, suggesting that soluble lymphokines other than IL-2 that may have been produced by T cells were not required for the generation of LANK cell activity in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号