首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oligopeptide-mediated helix stabilization of peptides in hydrophobic solutions was previously found by NMR and CD spectroscopic studies. The oligopeptide included the hydrophobic amino acids found in its parent peptide and were interposed by relevant basic oracidic amino acids. The strength of the interactions depended on the amino acid sequences. However, no helix-stabilizing effect was seen for the peptides in phosphate buffer solution, because the peptides assumed a random-coil structure. In order to ascertain whether the helix-stabilizing effect of an oligopeptide on its parent peptide could operate in aqueous solution, model peptides EK17 (Ac-AEAAAAEAAAKAAAAKA-NH2) and IFM17 (Ac-AEAAAAEIFMKAAAAKA-NH2) that may assume an alpha-helix in aqueous solutions were synthesized. Interactions were examined between various oligopeptides (EAAAK, KAAAE, EIFMK, KIFME, KIFMK and EYYEE) and EK17 or IFM17 in phosphate buffer and in 80% trifluoroethanol (TFE)-20% H2O solutions by CD spectra. EAAAK had little effect on the secondary structures of EK17 in both buffer and TFE solutions, while KAAAE, which has the reverse amino acid sequence of EAAAK, had a marked helix-destabilizing effect on EK17 in TFE. EIFMK and KIFME were found to stabilize the alpha-helical structure of EK17 in phosphate buffer solutions, whereas KIFMK and EYYEE destabilized the alpha-helical structure of EK17. EIFMK and KIFME had no effect on IFM17, because unexpectedly, IFM17 had appreciable amounts of beta-sheet structure in buffer solution. It was concluded that in order for the helix-stabilizing (1) the model peptide, the alpha-helical conformation of which is to be stabilized, should essentially assume an alpha-helical structure by nature, and (2) the hydrophobicity of the side-chains of the oligopeptide should be high enough for the oligopeptide to perform stable specific side chain-side chain intermolecular hydrophobic interactions with the model peptide.  相似文献   

2.
Apolipophorin-III (apoLp-III) from the insect, Manduca sexta, is a 166-residue exchangeable apolipoprotein that plays a critical role in the dynamics of plasma lipoprotein interconversions. Our previous work indicated that a 36-residue C-terminal peptide fragment, generated by cyanogen bromide digestion of apoLp-III, was unable to bind to lipid surfaces (Narayanaswami V, Kay CM, Oikawa K, Ryan RO, 1994, Biochemistry 33:13312-13320), and showed no secondary structure in aqueous solution. In this paper, we have performed structural studies of this peptide (E131-Q166) complexed with SDS detergent micelles, or in the presence of the helix-inducing solvent trifluoroethanol (TFE), by two-dimensional 1H NMR spectroscopy. The peptide adopts an alpha-helical structure in the presence of both SDS and 50% TFE. The lipid-bound structure of the peptide, generated from the NMR NOE data, showed an elongated, slightly curved alpha-helix. Despite its high alpha-helix forming propensity, the peptide requires alpha helix-promoting environment to adopt an alpha-helical structure. This indicates the importance of the surrounding chemical environment and implies that, in the absence of lipid, tertiary contacts in the folded protein play a role in maintaining its structural integrity. Furthermore, the data suggest that the amphipathic helix bundle organization serves as a prerequisite structural motif for the reversible lipoprotein-binding activity of M. sexta apoLp-III.  相似文献   

3.
Trifluoroethanol (TFE) is often used to increase the helicity of peptides to make them usable as models of helices in proteins. We have measured helix propensities for all 20 amino acids in water and two concentrations of trifluoroethanol, 15 and 40% (v/v) using, as a model system, a peptide derived from the sequence of the alpha-helix of ribonuclease T1. There are three main conclusions from our studies. (1) TFE alters electrostatic interactions in the ribonuclease T1 helical peptide such that the dependence of the helical content on pH is lost in 40% TFE. (2) Helix propensities measured in 15% TFE correlate well with propensities measured in water, however, the correlation with propensities measured in 40% TFE is significantly worse. (3) Propensities measured in alanine-based peptides and the ribonuclease T1 peptide in TFE show very poor agreement, revealing that TFE greatly increases the effect of sequence context.  相似文献   

4.
An increasing number of experimental and theoretical studies have demonstrated the importance of the 3(10)-helix/ alpha-helix/coil equilibrium for the structure and folding of peptides and proteins. One way to perturb this equilibrium is to introduce side-chain interactions that stabilize or destabilize one helix. For example, an attractive i, i + 4 interaction, present only in the alpha-helix, will favor the alpha-helix over 3(10), while an i, i + 4 repulsion will favor the 3(10)-helix over alpha. To quantify the 3(10)/alpha/coil equilibrium, it is essential to use a helix/coil theory that considers the stability of every possible conformation of a peptide. We have previously developed models for the 3(10)-helix/coil and 3(10)-helix/alpha-helix/ coil equilibria. Here we extend this work by adding i, i + 3 and i, i + 4 side-chain interaction energies to the models. The theory is based on classifying residues into alpha-helical, 3(10)-helical, or nonhelical (coil) conformations. Statistical weights are assigned to residues in a helical conformation with an associated helical hydrogen bond, a helical conformation with no hydrogen bond, an N-cap position, a C-cap position, or the reference coil conformation plus i, i + 3 and i, i + 4 side-chain interactions. This work may provide a framework for quantitatively rationalizing experimental work on isolated 3(10)-helices and mixed 3(10)-/alpha-helices and for predicting the locations and stabilities of these structures in peptides and proteins. We conclude that strong i, i + 4 side-chain interactions favor alpha-helix formation, while the 3(10)-helix population is maximized when weaker i, i + 4 side-chain interactions are present.  相似文献   

5.
The right‐handed α‐helix is the dominant helical fold of α‐peptides, whereas the left‐handed 314‐helix is the dominant helical fold of β‐peptides. Using molecular dynamics simulations, the properties of α‐helical α‐peptides and 314‐helical β‐peptides with different C‐terminal protonation states and in the solvents water and methanol are compared. The observed energetic and entropic differences can be traced to differences in the polarity of the solvent‐accessible surface area and, in particular, the solute dipole moments, suggesting different reasons for their stability.  相似文献   

6.
The alpha-aminoisobutyric (Aib) residue has generally been considered to be a strongly helicogenic residue as evidenced by its ability to promote helical folding in synthetic and natural sequences. Crystal structures of several peptide natural products, peptaibols, have revealed predominantly helical conformations, despite the presence of multiple helix-breaking Pro or Hyp residues. Survey of synthetic Aib-containing peptides shows a preponderance of 3(10)-, alpha-, and mixed 3(10)/alpha-helical structures. This review highlights the examples of Aib residues observed in nonhelical conformations, which fall 'primarily' into the polyproline II (P(II)) and fully extended regions of conformational space. The achiral Aib residue can adopt both left (alpha(L))- and right (alpha(R))-handed helical conformations. In sequences containing chiral amino acids, helix termination can occur by means of chiral reversal at an Aib residue, resulting in formation of a Schellman motif. Examples of Aib residues in unusual conformations are illustrated by surveying a database of Aib-containing crystal structures.  相似文献   

7.
The phage 434 Cro protein, the N-terminal domain of its repressor (R1-69) and that of phage lambda (lambda6-85) constitute a group of small, monomeric, single-domain folding units consisting of five helices with striking structural similarity. The intrinsic helix stabilities in lambda6-85 have been correlated to its rapid folding behavior, and a residual hydrophobic cluster found in R1-69 in 7 M urea has been proposed as a folding initiation site. To understand the early events in the folding of 434 Cro, and for comparison with R1-69 and lambda6-85, we examined the conformational behavior of five peptides covering the entire 434 Cro sequence in water, 40% (by volume) TFE/water, and 7 M urea solutions using CD and NMR. Each peptide corresponds to a helix and adjacent residues as identified in the native 434 Cro NMR and crystal structures. All are soluble and monomeric in the solution conditions examined except for the peptide corresponding to the 434 Cro helix 4, which has low water solubility. Helix formation is observed for the 434 Cro helix 1 and helix 2 peptides in water, for all the peptides in 40% TFE and for none in 7 M urea. NMR data indicate that the helix limits in the peptides are similar to those in the native protein helices. The number of side-chain NOEs in water and TFE correlates with the helix content, and essentially none are observed in 7 M urea for any peptide, except that for helix 5, where a hydrophobic cluster may be present. The low intrinsic folding propensities of the five helices could account for the observed stability and folding behavior of 434 Cro and is, at least qualitatively, in accord with the results of the recently described diffusion-collision model incorporating intrinsic helix propensities.  相似文献   

8.
A systematic survey of seven parallel alpha/beta barrel protein domains, based on exhaustive structural comparisons, reveals that a sizable proportion of the alpha beta loops in these proteins--20 out of a total of 49--belong to either one of two loop types previously described by Thornton and co-workers. Six loops are of the alpha beta 1 type, with one residue between the alpha-helix and beta-strand, and 13 are of the alpha beta 3 type, with three residues between the helix and the strand. Protein fragments embedding the identified loops, and termed alpha beta connections since they contain parts of the flanking helix and strand, have been analyzed in detail revealing that each type of connection has a distinct set of conserved structural features. The orientation of the beta-strand relative to the helix and loop portions is different owing to a very localized difference in backbone conformation. In alpha beta 1 connections, the chain enters the beta-strand via a residue adopting an extended conformation, while in alpha beta 3 it does so via a residue in a near alpha-helical conformation. Other conserved structural features include distinct patterns of side chain orientation relative to the beta-sheet surface and of main chain H-bonds in the loop and the beta-strand moieties. Significant differences also occur in packing interactions of conserved hydrophobic residues situated in the last turn of the helix. Yet the alpha-helix surface of both types of connections adopts similar orientations relative to the barrel sheet surface. Our results suggest furthermore that conserved hydrophobic residues along the sequence of the connections, may be correlated more with specific patterns of interactions made with neighboring helices and sheet strands than with helix/strand packing within the connection itself. A number of intriguing observations are also made on the distribution of the identified alpha beta 1 and alpha beta 3 loops within the alpha/beta-barrel motifs. They often occur adjacent to each other; alpha beta 3 loops invariably involve even numbered beta-strands, while alpha beta 1 loops involve preferentially odd beta-strands; all the analyzed proteins contain at least one alpha beta 3 loop in the first half of the eightfold alpha/beta barrel. Possible origins of all these observations, and their relevance to the stability and folding of parallel alpha/beta barrel motifs are discussed.  相似文献   

9.
The 173–195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several ‘spots’ of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation‐prone conformations. Here, we report CD and NMR studies on the α2‐helix‐derived peptide of maximal length (hPrP[180–195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other α2‐helix‐derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C‐terminal sequence of the PrPC full‐length α2‐helix and includes the highly conserved threonine‐rich 188–195 segment. At neutral pH, its conformation is dominated by β‐type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of α‐helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173–179 segment, as occurring in wild‐type and mutant peptides corresponding to the full‐length α2‐helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180–195 parental region in hPrPC makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full‐length α2‐helix, and could play a role in determining structural rearrangements of the entire globular domain. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The structures of the first and the second transmembrane segment of the bovine mitochondrial oxoglutarate carrier (OGC) were studied by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. Peptides 21-46 and 78-108 of its primary sequence were synthesized and structurally characterized in membrane-mimetic environments. CD data showed that at high concentrations of TFE (>50%) and SDS (>2%) both peptides assume alpha-helical structures, whereas in more hydrophilic environments only peptide 78-108 has a helical structure. (1)H-NMR spectra of the two peptides in TFE/water and SDS were fully assigned, and the secondary structures of the peptides were obtained from nuclear Overhauser effects, (3)J(alphaH-NH) coupling constants and alphaH chemical shifts. The three-dimensional solution structures of the peptides in TFE/water were generated by distance geometry calculations. A well-defined alpha-helix was found in the region K24-V39 of peptide 21-46 and in the region A86-F106 of peptide 78-108. We cannot exclude that in intact OGC the extension of these helices is longer. The helix of peptide 21-46 is essentially hydrophobic, whereas that of peptide 78-108 is predominantly hydrophilic.  相似文献   

11.
Folding propensities of peptide fragments of myoglobin.   总被引:8,自引:5,他引:3       下载免费PDF全文
Myoglobin has been studied extensively as a paradigm for protein folding. As part of an ongoing study of potential folding initiation sites in myoglobin, we have synthetized a series of peptides covering the entire sequence of sperm whale myoglobin. We report here on the conformation preferences of a series of peptides that cover the region from the A helix to the FG turn. Structural propensities were determined using circular dichroism and nuclear magnetic resonance spectroscopy in aqueous solution, trifluoroethanol, and methanol. Peptides corresponding to helical regions in the native protein, namely the B, C, D, and E helices, populate the alpha region of (phi, psi) space in water solution but show no measurable helix formation except in the presence of trifluoroethanol. The F-helix sequence has a much lower propensity to populate helical conformations even in TFE. Despite several attempts, we were not successful in synthesizing a peptide corresponding to the A-helix region that was soluble in water. A peptide termed the AB domain was constructed spanning the A- and B-helix sequences. The AB domain is not soluble in water, but shows extensive helix formation throughout the peptide when dissolved in methanol, with a break in the helix at a site close to the A-B helix junction in the intact folded myoglobin protein. With the exception of one local preference for a turn conformation stabilized by hydrophobic interactions, the peptides corresponding to turns in the folded protein do not measurably populate beta-turn conformations in water, and the addition of trifluoroethanol does not enhance the formation of either helical or turn structure. In contrast to the series of peptides described here, either studies of peptides from the GH region of myoglobin show a marked tendency to populate helical structures (H), nascent helical structures (G), or turn conformations (GH peptide) in water solution. This region, together with the A-helix and part of the B-helix, has been shown to participate in an early folding intermediate. The complete analysis of conformational properties of isolated myoglobin peptides supports the hypothesis that spontaneous secondary structure formation in local regions of the polypeptide may play an important role in the initiation of protein folding.  相似文献   

12.
The effect of insertion of lactic acid (Lac) residues into peptide helices has been probed using specifically designed sequences. The crystal structures of 11-residue and 14-residue depsipeptides Boc-Val-Val-Ala-Leu-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe (1) and Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe (3), containing centrally positioned Lac residues, have been determined. The structure of an 11-residue peptide Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe (2), analog of a which is an amide previously determined Lac-containing depsipeptide, Boc-Val-Ala-Leu-Aib-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe I. L. Karle, C. Das, and P. Balaram, Biopolymers, Vol. 59, (2001) pp. 276-289], is also reported. Peptide 1 adopts a helical fold, which is stabilized by mixture of 4-->1 and 5-->1 hydrogen bonds. Peptide 2 adopts a completely alpha-helical conformation stabilized by eight successive 5-->1 hydrogen bonds. Peptide 3 appears to be predominately alpha-helical, with seven 5-->1 hydrogen bonds and three 4-->1 interaction interspersed in the sequence. In the structure of peptide 3 in addition to water molecules in the head-to-tail region, hydration at an internal segment of the helix is also observed. A comparison of five related peptide helices, containing a single Lac residue, reveals that the hydroxy acid can be comfortably accommodated at interior positions in the helix, with the closest C=O...O distances lying between 2.8 and 3.3 A.  相似文献   

13.
To examine how a short secondary structural element derived from a native protein folds when in a different protein environment, we inserted an 11-residue beta-sheet segment (cassette) from human immunoglobulin fold, Fab new, into an alpha-helical coiled-coil host protein (cassette holder). This de novo design protein model, the structural cassette mutagenesis (SCM) model, allows us to study protein folding principles involving both short- and long-range interactions that affect secondary structure stability and conformation. In this study, we address whether the insertion of this beta-sheet cassette into the alpha-helical coiled-coil protein would result in conformational change nucleated by the long-range tertiary stabilization of the coiled-coil, therefore overriding the local propensity of the cassette to form beta-sheet, observed in its native immunoglobulin fold. The results showed that not only did the nucleating helices of the coiled-coil on either end of the cassette fail to nucleate the beta-sheet cassette to fold with an alpha-helical conformation, but also the entire chimeric protein became a random coil. We identified two determinants in this cassette that prevented coiled-coil formation: (1) a tandem dipeptide NN motif at the N-terminal of the beta-sheet cassette, and (2) the hydrophilic Ser residue, which would be buried in the hydrophobic core if the coiled-coil structure were to fold. By amino acid substitution of these helix disruptive residues, that is, either the replacement of the NN motif with high helical propensity Ala residues or the substitution of Ser with Leu to enhance hydrophobicity, we were able to convert the random coil chimeric protein into a fully folded alpha-helical coiled-coil. We hypothesized that this NN motif is a "secondary structural specificity determinant" which is very selective for one type of secondary structure and may prevent neighboring residues from adopting an alternate protein fold. These sequences with secondary structural specificity determinants have very strong local propensity to fold into a specific secondary structure and may affect overall protein folding by acting as a folding initiation site.  相似文献   

14.
Five peptides matching the helices alpha4, alpha5, alpha6, alpha7, and alpha8, spanning the entire sequence of domain II of pG-STP1-1, have been synthesized and their conformations analyzed by far-UV CD spectroscopy. The results show that a5, a7, and a8 peptides are unstructured in water/2,2,2-trifluoroethanol (TFE) solutions. The a4-peptide also adopts random conformations in aqueous solvent. Moreover, the relative low helical content (20%), estimated for this peptide in the presence of 30% (v/v) TFE, suggests that the sequence of this protein fragment does not possess sufficient information for a strong helical propensity. On the contrary, the synthesized a6 peptide, in the presence of TFE, showed a relevant structural autonomy with a helical content (41%) which was significantly higher than that estimated, under the same conditions, for all other peptides. More in general in the presence of solvents less polar than water, the isolated a6 peptide shows the same helical conformation adopted by the corresponding alpha6-helix in the hydrophobic core of the protein. A n-capping box motif, strictly conserved at the N-terminal of the alpha6-helix of all GST and related protein including eucaryotic translation elongation factor (EF1gamma) and the yeast prion protein Ure2, plays an important role in the alpha-helix nucleation and stability of this protein fragment. The results suggest that the alpha6-helix might represent a nucleation site of GST folding and that the helical conformation of this region of the protein is an important requirement during earlier events of GST refolding.  相似文献   

15.
Umezaki T  Iimura S  Noda Y  Segawa S  Yutani K 《Proteins》2008,71(2):737-742
In the denatured state (D(1) state) of cystein-free pyrrolidone carboxyl peptidase (PCP-0SH) from Pyrococcus furiosus, a hyperthermophile under nondenaturing conditions, a fairly stable alpha-helix (alpha6-helix) has been determined from H/D exchange-NMR experiments. On the other hand, the alpha6-helix region of the proline-mutant at position 199 (A199P) was unstructured in the D(1) state unlike that of the wild-type PCP-0SH, although the folded conformations of both proteins were almost identical to each other. This finding has been deduced from the information regarding the remaining amide hydrogens in the HSQC spectra after H/D exchanges in the D(1) state. To confirm this inference, we examined the helical propensities of two synthetic peptides from their NMR structural analysis in the presence of trifluoroethanol (TFE). One is an 18-residue peptide called the wild-type H6-peptide corresponding to the alpha6-helix (from Ser188 to Glu205) of the wild-type PCP-0SH, and the other is the mutant H6-peptide corresponding to the alpha6-helix region of A199P. The NOE-contact information obtained from the 2D-(1)H-NOESY spectra measured for both peptides in the presence of 30% TFE clearly demonstrated that the wild-type H6-peptide had a high helical propensity, but the mutant H6-peptide was almost totally unstructured. The TFE-induced helical propensities for these peptide fragments confirmed the conclusions deduced from the H/D exchange data measured in the D(1) states of two proteins.  相似文献   

16.
Wang Z  Plaxco KW  Makarov DE 《Biopolymers》2007,86(4):321-328
Although recent spectroscopic studies of chemically denatured proteins hint at significant nonrandom residual structure, the results of extensive small angle X-ray scattering studies suggest random coil behavior, calling for a coherent understanding of these seemingly contradicting observations. Here, we report the results of a Monte Carlo study of the effects of two types of local structures, alpha helix and Polyproline II (PPII) helix, on the dimensions of random coil polyalanine chains viewed as a model of highly denatured proteins. We find that although Flory's power law scaling, long regarded as a signature of random coil behavior, holds for chains containing up to 90% alpha or PPII helix, the absolute magnitude of the chain dimensions is sensitive to helix content. As residual alpha helix content increases, the chain contracts until it reaches a minimum radius at approximately 70% helix, after which the chain dimensions expand rapidly. With an alpha helix content of approximately 20%, corresponding to the Ramachandran probability of being in the helical basin, experimentally observed radii of gyration are recovered. Experimental radii are similarly recovered at an alpha helix content of approximately 87%, providing an explanation for the previously puzzling experimental finding that the dimensions of the highly helical methanol-induced unfolded state are experimentally indistinguishable from those of the helix-poor urea-unfolded state. In contrast, the radius of gyration increases monotonically with increasing PPII content, and is always more expanded than the dimensions observed experimentally. These results suggest that PPII is unlikely the sole, dominant preferred conformation for unfolded proteins.  相似文献   

17.
Najbar LV  Craik DJ  Wade JD  McLeish MJ 《Biochemistry》2000,39(19):5911-5920
Using CD and 2D (1)H NMR spectroscopy, we have identified potential initiation sites for the folding of T4 lysozyme by examining the conformational preferences of peptide fragments corresponding to regions of secondary structure. CD spectropolarimetry showed most peptides were unstructured in water, but adopted partial helical conformations in TFE and SDS solution. This was also consistent with the (1)H NMR data which showed that the peptides were predominantly disordered in water, although in some cases, nascent or small populations of partially folded conformations could be detected. NOE patterns, coupling constants, and deviations from random coil Halpha chemical shift values complemented the CD data and confirmed that many of the peptides were helical in TFE and SDS micelles. In particular, the peptide corresponding to helix E in the native enzyme formed a well-defined helix in both TFE and SDS, indicating that helix E potentially forms an initiation site for T4 lysozyme folding. The data for the other peptides indicated that helices D, F, G, and H are dependent on tertiary interactions for their folding and/or stability. Overall, the results from this study, and those of our earlier studies, are in agreement with modeling and HD-deuterium exchange experiments, and support an hierarchical model of folding for T4 lysozyme.  相似文献   

18.
Felts AK  Harano Y  Gallicchio E  Levy RM 《Proteins》2004,56(2):310-321
We have studied the potential of mean force of two peptides, one known to adopt a beta-hairpin and the other an alpha-helical conformation in solution. These peptides are, respectively, residues 41-56 of the C-terminus (GEWTYDDATKTFTVTE) of the B1 domain of protein G and the 13 residue C-peptide (KETAAAKFERQHM) of ribonuclease A. Extensive canonical ensemble sampling has been performed using a parallel replica exchange method. The effective potential employed in this work consists of the OPLS all-atom force field (OPLS-AA) and an analytical generalized Born (AGB) implicit solvent model including a novel nonpolar solvation free energy estimator (NP). An additional dielectric screening parameter has been incorporated into the AGBNP model. In the case of the beta-hairpin, the nonpolar solvation free energy estimator provides the necessary effective interactions for the collapse of the hydrophobic core (W43, Y45, F52, and V54), which the more commonly used surface-area-dependent nonpolar model does not provide. For both the beta-hairpin and the alpha-helix, increased dielectric screening reduces the stability of incorrectly formed salt bridges, which tend to disrupt the formation of the hairpin and helix, respectively. The fraction of beta-hairpin and alpha-helix content we obtained using the AGBNP model agrees well with experimental results. The thermodynamic stability of the beta-hairpin from protein G and the alpha-helical C-peptide from ribonuclease A as modeled with the OPLS-AA/AGBNP effective potential reflects the balance between the nonpolar effective potential terms, which drive compaction, and the polar and hydrogen bonding terms, which promote secondary structure formation.  相似文献   

19.
The energetics of alpha-helix formation are fairly well understood and the helix content of a given amino acid sequence can be calculated with reasonable accuracy from helix-coil transition theories that assign to the different residues specific effects on helix stability. In internal helical positions, alanine is regarded as the most stabilizing residue, whereas glycine, after proline, is the more destabilizing. The difference in stabilization afforded by alanine and glycine has been explained by invoking various physical reasons, including the hydrophobic effect and the entropy of folding. Herein, the contribution of these two effects and that of hydrophilic area burial is evaluated by analyzing Ala and Gly mutants implemented in three helices of apoflavodoxin. These data, combined with available data for similar mutations in other proteins (22 Ala/Gly mutations in alpha-helices have been considered), allow estimation of the difference in backbone entropy between alanine and glycine and evaluation of its contribution and that of apolar and polar area burial to the helical stabilization typically associated to Gly-->Ala substitutions. Alanine consistently stabilizes the helical conformation relative to glycine because it buries more apolar area upon folding and because its backbone entropy is lower. However, the relative contribution of polar area burial (which is shown to be destabilizing) and of backbone entropy critically depends on the approximation used to model the structure of the denatured state. In this respect, the excised-peptide model of the unfolded state, proposed by Creamer and coworkers (1995), predicts a major contribution of polar area burial, which is in good agreement with recent quantitations of the relative enthalpic contribution of Ala and Gly residues to alpha-helix formation.  相似文献   

20.
Y Levy  E Hanan  B Solomon  O M Becker 《Proteins》2001,45(4):382-396
A set of 34 molecular dynamic (MD) simulations totaling 305 ns of simulation time of the prion protein-derived peptide PrP106-126 was performed with both explicit and implicit solvent models. The objective of these simulations is to investigate the relative stability of the alpha-helical conformation of the peptide and the mechanism for conversion from the helix to a random-coil structure. At neutral pH, the wild-type peptide was found to lose its initial helical structure very fast, within a few nanoseconds (ns) from the beginning of the simulations. The helix breaks up in the middle and then unwinds to the termini. The spontaneous transition into the random coil structure is governed by the hydrophobic interaction between His(111) and Val(122). The A117V mutation, which is linked to GSS disease, was found to destabilize the helix conformation of the peptide significantly, leading to a complete loss of helicity approximately 1 ns faster than in the wild-type. Furthermore, the A117V mutant exhibits a different mechanism for helix-coil conversion, wherein the helix begins to break up at the C-terminus and then gradually to unwind towards the N-terminus. In most simulations, the mutation was found to speed up the conversion through an additional hydrophobic interaction between Met(112) and the mutated residue Val(117), an interaction that did not exist in the wild-type peptide. Finally, the beta-sheet conformation of the wild-type peptide was found to be less stable at acidic pH due to a destabilization of the His(111)-Val(122), since at acidic pH this histidine is protonated and is unlikely to participate in hydrophobic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号