首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which GTP induces Ca2+ release from Ca2(+)-preloaded rat hepatic microsomes was studied. In the same concentration range as that for Ca2+ release, GTP inhibited the initial rate of ATP-driven Ca2+ uptake. It also inhibited the formation by ATP of the phosphorylated intermediate of Ca2(+)-ATPase, which had previously been identified by us as a 97-116 kDa protein (Fleschner, C.R., et al. (1985) Biochem. J. 226, 839). Vanadate, an inhibitor of Ca2(+)-ATPase, also caused Ca2+ release in a similar fashion, but its effect was not additive to that of GTP. Although the non-metabolizable GTP analogues, GMPPNP and GTP gamma S, did not cause Ca2+ release by themselves, GTP gamma S completely and GMPPNP partially blocked the effect of GTP. Pretreatment of vesicles with either cholera or pertussis toxin did not alter the responsiveness to GTP. These results indicate that GTP inhibits microsomal Ca2(+)-ATPase, independently of the Gs and Gi proteins. Because a decrease in Ca2+ uptake results in a net increase in Ca+ release, this effect of GTP seems to account, at least partially, for the GTP-induced Ca2+ release from microsomes.  相似文献   

2.
The effect of the guanine nucleotide GTP on Ca2+ release from the endoplasmic reticulum of digitonin-permeabilized islets was investigated. maximal and half-maximal Ca2+ release were observed at 5 microM- and 2.5 microM-GTP respectively. GTP caused a rapid release of Ca2+ from the endoplasmic reticulum, which was complete within 1 min. GTP-induced Ca2+ release was structurally specific and required the hydrolysis of GTP. The combination of maximal concentrations of GTP (10 microM) and myo-inositol 1,4,5-trisphosphate (IP3) (10 microM) resulted in an additive effect on Ca2+ release from the endoplasmic reticulum. GDP (100 microM), which inhibits GTP-induced Ca2+ release, did not affect IP3-induced Ca2+ release. Furthermore, GTP-induced Ca2+ release was not independent on submicromolar free Ca2+ concentrations, unlike IP3-induced Ca2+ release. These observations suggest that mechanistically GTP-induced Ca2+ release is different from IP3-induced Ca2+ release from the endoplasmic reticulum.  相似文献   

3.
The effects of Ca2+ and GTP on the release of Ca2+ from the inositol 1,4,5-trisphosphate (IP3) sensitive Ca2+ compartment were investigated with digitonin permeabilized rat pancreatic acinar cells. The amount of Ca2+ released due to IP3 directly correlated with the amount of stored Ca2+ and was found to be inversely proportional to the medium free Ca2+ concentration. Ca2+ release induced by 0.18 microM IP3 was half maximally inhibited at 0.5 microM free Ca2+, i.e. at concentrations observed in the cytosol of pancreatic acinar cells. GTP did not cause Ca2+ release on its own, but a single addition of GTP (20 microM) abolished the apparent desensitization of the Ca2+ release which was observed during repeated IP3 applications. This effect of GTP was reversible. GTP gamma S could not replace GTP. Desensitization still occurred when GTP gamma S was added prior to GTP. The reported data indicate that GTP, stored Ca2+ and cytosolic free Ca2+ modulate the IP3 induced Ca2+ release.  相似文献   

4.
Recent evidence has revealed that a highly sensitive and specific guanine nucleotide regulatory process controls intracellular Ca2+ release within N1E-115 neuroblastoma cells (Gill, D. L., Ueda, T., Chueh, S. H., and Noel, M. W. (1986) Nature 320, 461-464). The present report documents GTP-induced Ca2+ release within quite distinct cell types, including the DDT1MF-2 smooth muscle cell line. GTP-induced Ca2+ release has similar GTP sensitivity and specificity among cells and rapidly mobilizes up to 70% of Ca2+ specifically accumulated within a nonmitochondrial Ca2+-pumping organelle within permeabilized DDT2MF-2 cells. Maximal GTP-induced release of Ca2+ is observed to be greater than inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release (the latter being approximately 30% of total releasable Ca2+). After maximal IP3-induced release, further IP3 addition is ineffective, whereas subsequent addition of GTP further releases Ca2+ to equal exactly the extent of Ca2+ release observed by addition of GTP in the absence of IP3. This suggests that IP3 releases Ca2+ from the same pool as GTP, whereas GTP also releases from an additional pool. The effects of GTP appear to be reversible since simple washing of GTP-treated cells restores their previous Ca2+ uptake properties. Electron microscopic analysis of GTP-treated membrane vesicles reveals their morphology to be unchanged, whereas treatment of vesicles with 3% polyethylene glycol, known to enhance GTP-mediated Ca2+ release, clearly induces close coalescence of membranes. In the presence of 4 mM oxalate, GTP induces a rapid and profound uptake, as opposed to release, of Ca2+. The findings suggest that GTP-activated Ca2+ movement is a widespread phenomenon among cells, which can function on the same Ca2+ pool mobilized by IP3, and although activating Ca2+ movement by a mechanism distinct from IP3, does so via a process that does not appear to involve fusion between membranes.  相似文献   

5.
The GTP-activated Ca2+ release process we recently described (Gill, D. L., Ueda, T., Chueh, S. H., and Noel, M. W. (1986) Nature 320, 461-464) was revealed in the preceding report to operate via a mechanism likely to be induced by close membrane association but which appears not to involve membrane fusion (Chueh, S. H., Mullaney, J. M., Ghosh, T. K., Zachary, A. L., and Gill, D. L. (1987) J. Biol. Chem. 262, 13857-13864). To determine more about the GTP-activated Ca2+ translocation process, effects of GTP on cells loaded with Ca-oxalate were investigated. Using permeabilized cells of both the N1E-115 neuroblastoma and DDT1MF-2 smooth muscle cell lines, 10 microM GTP activates a profound uptake of Ca2+ in the presence of oxalate, as opposed to release observed without oxalate. GTP stimulation of Ca2+ uptake was observed at oxalate concentrations (2 mM) only slightly augmenting Ca2+ uptake without GTP; with 8 mM oxalate (which alone induces linear Ca2+ accumulation) GTP still increases the rate of uptake. GTP-activated uptake in the presence of oxalate is completely reversed by 1 mM vanadate. 3% polyethylene glycol enhances the effect of GTP although GTP-activated uptake is still observed without polyethylene glycol. The Km for GTP for activation of Ca2+ uptake is 0.9 microM. Uptake is not activated by guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) or guanosine 5'-(beta, gamma-imido)triphosphate (GppNHp); however, GTP gamma S (but not GppNHp) completely blocks the action of GTP. GDP gives a delayed uptake response which is blocked by ADP, indicating its action arises from conversion to GTP. In the presence of ADP, GDP blocks the action of GTP; guanosine 5'-O-(2-thio)diphosphate, which does not activate uptake, also blocks the action of GTP. These data reveal almost exact correlation between parameters affecting GTP-activated uptake and release, strongly suggesting the same process mediates both events. To explain the opposite effects of GTP in the absence and presence of oxalate, it is proposed that GTP activates a transmembrane conveyance of Ca2+ between oxalate-permeable and -impermeable compartments.  相似文献   

6.
Permeabilized rat hepatocytes were used to study the effects of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and GTP on Ca2+ uptake and release by ATP-dependent intracellular Ca2+ storage pools. Under conditions where these Ca2+ pools were completely filled, maximal doses of Ins(1,4,5)P3 released only 25-30% of the sequestered Ca2+. The residual Ca2+ was freely releasable with the Ca2+ ionophore ionomycin. Addition of GTP in the absence of Ins(1,4,5)P3 did not cause Ca2+ release and had no effect on the steady-state level of Ca2+ accumulation by intracellular storage pools. However, after a 3-4-min treatment with GTP the size of the Ins(1,4,5)P3-releasable Ca2+ pool was increased by about 2-fold, with a proportional decrease in the residual Ca2+ available for release by ionomycin. In contrast to the situation with freshly permeabilized cells, permeabilized hepatocytes from which cytosolic components had been washed out exhibited direct Ca2+ release in response to GTP addition. The potentiation of Ins(1,4,5)P3-induced Ca2+ release by GTP in permeabilized hepatocytes was concentration-dependent with half-maximal effects at about 5 microM GTP. The dose response to Ins(1,4,5)P3 was not shifted by GTP; instead GTP increased the amount of Ca2+ released at all Ins(1,4,5)P3 concentrations. The effects of GTP were not mimicked by other nucleotides or nonhydrolyzable GTP analogues. In fact, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) inhibited the actions of GTP. However, this inhibition only occurred when GTP gamma S was added prior to GTP, suggesting that the GTP effect is not readily reversible once the cells have been permeabilized. Experiments using vanadate to inhibit the ATP-dependent Ca2+ uptake pump showed that Ins(1,4,5)P3 releases all of the Ca2+ within the Ins(1,4,5)P3-sensitive Ca2+ pool even in the absence of GTP. The increase of Ins(1,4,5)P3-induced Ca2+ release brought about by GTP was also unaffected by vanadate. It is concluded that GTP increases the proportion of the sequestered Ca2+ which is available for release by Ins(1,4,5)P3, either by unmasking latent Ins(1,4,5)P3-sensitive Ca2+ release sites or by allowing direct Ca2+ movement between Ins(1,4,5)P3-sensitive and Ins(1,4,5)P3-insensitive Ca2+ storage pools.  相似文献   

7.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   

8.
We have investigated the regulation of phospholipase D (PLD) activity by guanine nucleotides and Ca2+ in cells of the NG108-15 neuroblastoma X glioma line that were permeabilized with digitonin. The nonhydrolyzable GTP analogue guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) caused a nearly sixfold increase (EC50 = 3 microM) in production of [3H]phosphatidylethanol (specific product of the PLD transphosphatidylation reaction). Other GTP analogues were less effective than GTP gamma S, and guanosine-5'-O-(2-thiodiphosphate) inhibited PLD activation by GTP gamma S. Both basal and GTP gamma S-stimulated PLD activities were potentiated by MgATP and Mg2+. Adenosine-5'-O-(3-thiotriphosphate) and ADP also potentiated the effect of GTP gamma S, but non-phosphorylating analogues of ATP had no such effect. The activation of PLD by GTP gamma S did not require Ca2+ and was independent of free Ca2+ ions up to a concentration of 100 nM (resting intracellular concentration). Higher Ca2+ concentrations (greater than or equal to 1 microM) completely inhibited PLD activation by GTP gamma S. It is concluded that elevated intracellular Ca2+ concentrations may negatively modulate PLD activation by a guanine nucleotide-binding protein, thus affecting receptor-PLD coupling in neural-derived cells.  相似文献   

9.
Evidence suggests that GTP but not GTP gamma S activates Ca2+ movement between myo-inositol 1,4,5-trisphosphate (IP3)-sensitive and -insensitive Ca2+ pools (1). Measuring 45Ca2+ uptake into pancreatic microsomal vesicles we have determined the sizes of three different Ca2+ pools which release Ca2+ in response 1) to IP3, 2) to caffeine, and 3) to both IP3 and caffeine ("common" Ca2+ pool). In the presence of GTP the size of the IP3-sensitive Ca2+ pool is decreased whereas the "common" Ca2+ pool is increased as compared to control Ca2+ pool sizes in the presence of GTP gamma S. This effect of GTP is inhibited by bafilomycin B1, a specific inhibitor of vacuolar type H+ ATPases (2). We conclude that GTP induced connection between IP3- and caffeine-sensitive Ca2+ pools is triggered by intravesicular acidification and involves function of small GTP-binding proteins, known to mediate interorganelle transfer.  相似文献   

10.
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein.  相似文献   

11.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

12.
The effects of GTP, with or without polyethylene glycol (PEG), on the release and uptake of Ca2+ were examined by using saponin-treated macrophages and sarcoplasmic reticulum isolated from skeletal muscles. The application of GTP in concentrations in the range 0.1-10 microM induced a gradual, small but sustained release of Ca2+ from the saponin-treated macrophages. The addition of PEG to GTP markedly enhanced the GTP-mediated Ca2+ release. GTP at the same concentration ranges used for Ca2+ release decreased the amount of Ca2+ uptake, at a steady state, but stimulated the rate of Ca2+ accumulation in the presence of oxalate, the Ca2+-precipitating anion. The addition of PEG abolished the GTP-evoked stimulation of Ca2+ accumulation in the presence of oxalate. The stimulating effect on the rate of Ca2+ accumulation by GTP and its elimination by PEG were not due to changes in the permeability of oxalate by either GTP or PEG, or both. The Ca2+-releasing effect of GTP without PEG was enhanced by eliminating the uptake activity by decreasing the content of ATP. These results indicate that GTP has an inherent activity to release Ca2+ from non-mitochondrial intracellular stores of saponin-treated macrophages, and PEG enhances the GTP-mediated Ca2+ release, partly owing to its eliminating effect on GTP-stimulated Ca2+ uptake activity. These effects of GTP observed with saponin-permeabilized macrophages were not apparent in the isolated skeletal-muscle sarcoplasmic reticulum.  相似文献   

13.
Rat mast cells and bone marrow-derived mouse mast cells (BMMC) were sensitized with mouse IgE mAb, and permeabilized by ATP to introduce guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) and/or guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) into the cells. After ATP-induced lesions were resealed with Mg2+, the cells were challenged by Ag to determine the effect of the nonhydrolyzable guanosine phosphate on Ag-induced hydrolysis of phosphoinositides and histamine release. Introduction of GTP gamma S into permeabilized rat mast cells or BMMC, followed by exposure of the cells to extracellular Ca2+, resulted in histamine release, but failed to induce hydrolysis of phosphoinositides. It was also found that introduction of GTP gamma S into the cells did not synergistically enhance Ag-induced histamine release. Introduction of GDP beta S into sensitized BMMC inhibited the GTP gamma S-dependent, Ca2+-induced histamine release but failed to inhibit Ag-induced histamine release. The results suggest that GTP gamma S-dependent, Ca2+-induced histamine release and Ag-induced histamine release go through independent biochemical pathways. It was also found that introduction of GTP gamma S or GDP beta S into sensitized BMMC neither enhanced nor inhibited Ag-induced formation of inositol phosphates. These results together with previous findings that pretreatment of BMMC with either pertussis toxin or cholera toxin does not affect Ag-induced hydrolysis of phosphoinositides, indicate that a G protein is not involved in the transduction of IgE-mediated triggering signals to phospholipase C in rodent mast cells.  相似文献   

14.
The actions of thapsigargin (Tg), a plant sesquiterpene lactone, on Ca2+ homeostasis were investigated in digitonin-permeabilized GH4C1 rat pituitary cells. Tg (1 microM) caused a rapid and sustained increase in ambient Ca2+ concentration [( Ca2+]) and inhibited the rise in [Ca2+] induced by subsequent addition of TRH (100 nM), inositol 1,4,5-trisphosphate (IP3, 10 microM), or the nonhydrolyzable GTP analogue guanosine 5'-0-(3-thiotriphosphate) (GTP gamma S, 10 microM). However, neither IP3 nor GTP gamma S pretreatment, which themselves release sequestered Ca2+, prevented the Ca2+ accumulation induced by Tg. Pretreatment with heparin (100 micrograms/ml, 10 min), an IP3 receptor antagonist, did not affect Ca2+ accumulation induced by Tg, although it abolished the rise in [Ca2+] induced by IP3. The ability of Tg to increase [Ca2+] was dependent on added ATP. We conclude that, in GH4C1 cells, Tg acts, in part, on TRH-, IP3- and GTP gamma S-sensitive Ca2+ pools; however, Tg also acts on an ATP-dependent pool of intracellular Ca2+ which is not sensitive to TRH, IP3 or GTP gamma S, indicating a complexity of intracellular Ca2+ pools not previously appreciated in these cells.  相似文献   

15.
The role of guanine nucleotides in insulin secretion was investigated in electrically permeabilized RINm5F cells. Ca2+ stimulated insulin release (EC50 approximately 2 microM Ca2+). The GTP stable analog, GTP gamma S, elicited insulin secretion at vanishingly low Ca2+ concentrations (less than 10(-11) M), slightly potentiated the response to intermediate Ca2+ levels, but exerted less than additive effects at maximal Ca2+ concentrations. The GDP analog, GDP beta S, inhibited both GTP gamma S- and Ca2+-stimulated secretion. The action of GTP gamma S was not mediated by cAMP, as the latter only enhanced Ca2+-induced secretion. In contrast, 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, promoted insulin release at nonstimulatory Ca2+ levels as well as potentiating the Ca2+ response. GTP analogs stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2), as assessed by inositol phosphate generation. However, this could not fully explain guanine nucleotide-induced secretion because: GTP gamma S-stimulated PtdInsP2 breakdown was totally dependent on Ca2+ and abolished at Ca2+ below 10(-11) M; at these Ca2+ levels, activators of protein kinase C were weak or ineffective secretagogues; the GTP analog Gpp(NH)p was much less effective than GTP gamma S in activating PtdInsP2 hydrolysis, while fully mimicking the effect on Ca2+-independent secretion. Both GTP gamma S-induced PtdInsP2 hydrolysis and insulin release were insensitive to pertussis toxin and cholera toxin. The findings point to a guanine nucleotide-regulated site in the activation of insulin secretion different from the known transmembrane signalling systems.  相似文献   

16.
The exocytotic histamine secretion from ATP-permeabilized and Mg-resealed rat peritoneal mast cells is markedly enhanced by the addition of guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) at a concentration of 100 uM. GTP gamma S also caused a great enhancement of arachidonic acid liberation from these cells. The level of released arachidonic acid in permeabilized cells enhanced by GTP gamma S in the absence of Ca2+ was nearly equal to the level of permeabilized cells incubated in the presence of Ca2+ but without GTP gamma S, suggesting the Ca2+ sparing effect of GTP gamma S. From the time sequential changes in the [3H]arachidonate radioactivities in various phospholipids, it is conceivable that nucleotide-dependent arachidonic acid release was mediated via phospholipase A2 pathway. The entrapment of a diacylglycerol (DG) lipase inhibitor, RHC 80267, caused suppression of both Ca2+- and guanine nucleotide-dependent arachidonic acid liberation in mast cells, indicating contribution of DG lipase pathway for arachidonic acid generation.  相似文献   

17.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and GTP mobilized 8% and 90% of the ionophore-releaseable Ca2+ pool from rat liver microsomes, respectively. In contrast to GTP, which acted after a lag-time, the Ins(1,4,5)P3-induced Ca2+ release was immediate. Poly(ethylene glycol) inhibited the effect of Ins(1,4,5)P3 and enhanced that of GTP. Ins(1,4,5)P3 accelerated and enhanced the GTP-induced Ca2+ release. Guanylyl imidodiphosphate inhibited competitively the GTP stimulated Ca2+ release, but not the GTP-dependent phosphorylation of the Mr 17,000 and 38,000 protein bands.  相似文献   

18.
G protein regulation of human platelet membrane phospholipase A2 activity was investigated at pH 8.0 and 9.0 by studying the effects of the nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), and of F-/Al3+ ions on arachidonic acid (AA) release. The membrane acted as the source of the enzyme, the substrate, and the G protein. At pH 8.0, 10 and 100 microM GTP gamma S stimulated AA mobilization at least 6-fold. Optimum AA release conditions required 1 mM Ca2+ and 5 mM Mg2+. Nonspecific nucleotide effect was excluded since similar stimulatory effects on AA release were not observed by ATP, GTP, ADP, and NADP. Although at pH 9.0 the GTP gamma S-stimulated AA release was greater than at pH 8.0, it constituted only 26% of the total. At both pH values the effect of F- (10 mM) in the presence of Al3+ (2 microM) was similar to that of GTP gamma S. The G protein inhibitor, guanosine 5'-O-(2-thiodiphosphate), inhibited the GTP gamma S-stimulated AA release by about 80% at pH 8.0 and by 100% at pH 9.0. To determine a possible contribution to AA mobilization by the phospholipase C and diacylglycerol lipase pathway, the effects of neomycin, a phospholipase C inhibitor, were investigated. 100 microM neomycin did not inhibit the GTP gamma S-stimulated AA release at pH 8.0 and only slightly so (17%) at pH 9.0. At pH 8.0 in the presence of Ca2+ the released fatty acids consisted mainly of arachidonic and docosahexaenoic acids (80 and 8%, respectively). GTP gamma S had no effect on the fatty acid profile but only on their quantity. These results provide evidence of G protein regulation of phospholipase A2 activity in isolated platelet membranes.  相似文献   

19.
The Ca2+ pump of rat heart sarcolemma has been studied via its ATP-dependent Ca2+ transport and (Ca2+ + Mg2+)-dependent ATPase activities. Direct incubation of the sarcolemmal vesicles with micromolar concentration of guanosine 5'-O-(thiotriphosphate) (GTP gamma S) results in the reduction of Ca2+ uptake by 34 +/- 10% and ATP hydrolysis by 55 +/- 7%. Similar inhibition of the sarcolemmal Ca2+ pump is also observed with micromolar concentration of inositol trisphosphate (IP3), while GDP or inositol tetrakisphosphate (IP4) has no effect. Based on the evidence that these sarcolemmal vesicles are capable of generating IP3 upon stimulation by GTP gamma S, and that no additive effect is observed when both agents are incubated together with the membranes, it is concluded that the effect of GTP gamma S on the Ca2+ pump is mediated by IP3. The results here show for the first time that plasma membrane Ca2+ pump has a role in the primary Ca2+ signaling.  相似文献   

20.
Isolated rabbit pancreatic acinar cells, permeabilized by saponin treatment and incubated in the presence of 0.1 microM free Ca2+, accumulated 3.3 nmol of Ca2+/mg of acinar protein in an energy-dependent pool. Part of this energy-dependent pool could be released by GTP in a polyethylene glycol-dependent manner. The kinetics of GTP-induced release of Ca2+ showed a biphasic pattern with an initial rapid phase followed by a sustained slower phase. In contrast, IP3-induced release of Ca2+ was completed within 30 s following addition of IP3. No reuptake of Ca2+ was observed following GTP- or IP3-induced release of Ca2+. The GTP effect was independent of IP3 and not inhibited by Ca2+, indicating that the IP3-operated Ca2+ channel is not involved in GTP-induced release of Ca2+. The size of the IP3-releasable pool was not affected by GTP, indicating that GTP, when added to permeabilized acinar cells, does not promote the coupling between IP3-insensitive and IP3-sensitive Ca2+ accumulating organelles. Thus, in permeabilized acinar cells, GTP and IP3 act on different Ca2+ sequestering pools. Interestingly, however, comparison of the size of the GTP-releasable pool with that of the IP3-releasable pool for the cell preparations used in the present study, revealed an inversed relationship, indicating that at the time of permeabilization the GTP-releasable pool can be coupled to a greater or lesser extent to the IP3-releasable pool. This suggests that, in the intact cell, a GTP-dependent mechanism may exist that controls the size of the IP3-releasable pool by coupling IP3-insensitive to IP3-sensitive organelles. Moreover, this suggests that the extent of coupling is preserved during permeabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号