首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydration pattern and energetics of 'A-tract' containing duplexes have been studied using molecular dynamics on 12-mer self-complementary sequences 5'-d(GCA4T4GC)-3' and 5'-d(CGT4A4CG)-3'. The structural features for the simulated duplexes showed correlation with the corresponding experimental structures. Analysis of the hydration pattern confirmed that water network around the simulated duplexes is more conformation specific rather than sequence specific. The calculated heat capacity change upon duplex formation showed that the process is entropically driven for both the sequences. Furthermore, the theoretical free energy estimates calculated using MMPBSA approach showed a higher net electrostatic contribution for A4T4 duplex formation than for T4A4, however, energetically both the duplexes are observed to be equally stable.  相似文献   

2.
Characterization of leukotriene A4 and B4 biosynthesis   总被引:4,自引:0,他引:4  
We have studied LTA4 and LTB4 synthesis in a cell-free system from RBL-1 cells. All the enzymes leading to the formation of LTB4 from arachidonic acid are localized in the soluble fraction (100,000 x g supernatant) of these cells. The formation of LTA4 and LTB4 is complete by 10 min. When we varied the arachidonic acid concentration from 1 to 300 microM, the synthesis of LTB4 leveled off at 30 microM and of LTA4 at 100 microM while 5-HETE had not reached a plateau at 300 microM. This enzyme system has the capacity to generate relatively large amounts of 5-HETE and LTA4 and only a relatively small amount of LTB4. Therefore, the rate limiting step is not the 5-lipoxygenase, the first step in the pathway, but the conversion of LTA4 to LTB4. This is in contrast to cyclooxygenase pathway where the first step is rate limiting. A second addition of arachidonic acid at submaximal concentration for LTA4 synthesis did not produce any additional LTA4 or LTB4. Further study of this phenomenon showed that the 5-lipoxygenase and LTA-synthase were inactivated with time by preincubation with arachidonic acid and that peroxy fatty acids seem to be the inactivating species.  相似文献   

3.
4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it.  相似文献   

4.
In this review, we highlight the physical and enzymatic properties of the novel human sulfotransferase, SULT4A1. The gene is most highly expressed in selective regions of the brain, although work to date has failed to identify any specific endogenous substrate for the enzyme. SULT4A1 shares low homology with other human sulfotransferases. Nevertheless, it is highly conserved between species. Despite the low homology, it is structurally very similar to other cytosolic sulfotransferases with a conserved substrate binding domain, dimerization site and partial cofactor binding sites. However, the catalytic cavity is much smaller, and it has been suggested that the cofactor may not be accommodated within it. A recent link between variability in the 5'UTR of the SULT4A1 gene and schizophrenia has heightened interest in the endogenous function of the enzyme and its possible role in human disease.  相似文献   

5.
6.
4'-Deoxy-4'-fluorokanamycins A (17) and B (25) have been prepared through fluorinative ring-opening of the D-galacto-3',4'-oxiranes (8 and 21) derived from kanamycin A and B with potassium hydrogenfluoride in ethane-1,2-diol. The mechanism of preponderant formation of the 4'-deoxy-4'-fluoro-D-gluco (9 and 22) over the 3'-deoxy-3'-fluoro-D-gulo derivatives was discussed. In the synthesis of 25, the unusual 3',6'-epimine (23) was the main product along with the 4'-deoxy-4'-fluoro derivative. The mechanism of this reaction is also discussed. Both 17 and 25 were active against resistant bacteria producing aminoglycoside-adenylylating enzymes for HO-4'.  相似文献   

7.
Collagen, type IV, alpha 1 (COL4A1) and alpha 2 (COL4A2) form heterotrimers and are abundant components of basement membranes, including those of the cerebral vasculature. COL4A1 mutations are an increasingly recognized cause of multisystem disorders, including highly penetrant cerebrovascular disease and intracerebral hemorrhage (ICH). Because COL4A1 and COL4A2 are structurally and functionally associated, we hypothesized that variants in COL4A2 would also cause ICH. We sequence COL4A2 in 96 patients with ICH and identify three rare, nonsynonymous coding variants in four patients that are not present in a cohort of 144 ICH-free individuals. All three variants change evolutionarily conserved amino acids. Using a cellular assay, we show that these putative mutations cause intracellular accumulation of COL4A1 and COL4A2 at the expense of their secretion, which supports their pathogenecity. Furthermore, we show that Col4a2 mutant mice also have completely penetrant ICH and that mutations in mouse and human lead to retention of COL4A1 and COL4A2 within the endoplasmic reticulum (ER). Importantly, two of the three putative mutations found in patients trigger ER stress and activate the unfolded protein response. The identification of putative COL4A2 mutations that might contribute to ICH in human patients provides insight into the pathogenic mechanisms of this disease. Our data suggest that COL4A2 mutations impair COL4A1 and COL4A2 secretion and can also result in cytotoxicity. Finally, our findings suggest that, collectively, mutations in COL4A1 and COL4A2 contribute to sporadic cases of ICH.  相似文献   

8.
TLRs recognize microbial products. Their subcellular distribution is optimized for microbial recognition. Little is known, however, about mechanisms regulating the subcellular distribution of TLRs. LPS is recognized by the receptor complex consisting of TLR4 and MD-2. Although MD-2, a coreceptor for TLR4, enhances cell surface expression of TLR4, an additional mechanism regulating TLR4 distribution has been suggested. We show here that PRAT4A, a novel protein associated with TLR4, regulates cell surface expression of TLR4. PRAT4A is associated with the immature form of TLR4 but not with MD-2 or TLR2. PRAT4A knockdown abolished LPS responsiveness in a cell line expressing TLR4/MD-2, probably due to the lack of cell surface TLR4. PRAT4A knockdown down-regulated cell surface TLR4/MD-2 on dendritic cells. These results demonstrate a novel mechanism regulating TLR4/MD-2 expression on the cell surface.  相似文献   

9.
10.
11.
A convenient method of synthesis of 1,6-anhydro-4-deoxy-2-O-tosyl-4-fluoro-beta-D-glucopyranose by fusion of 1,6;3,4-dianhydro-2-O-tosyl-beta-D-galactopyranose with 2,4,6-trimethylpyridinium fluoride was found. By successive action of ammonia, methyl trifluoroacetate, and acetic anhydride, the resulting compound was transformed into 1,6-anhydro-3-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-beta-D-glucopyranose, which was converted into 3,6-di-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-alpha-D-glucopyranosyl fluoride by the reaction with HF/Py. The resulting fluoride was further used as a glycosyl donor in the synthesis of methylumbelliferyl N-acetyl-4-deoxy-4-fluoro-beta-D-glucosaminide.  相似文献   

12.
eIF4A is a key component in eukaryotic translation initiation; however, it has not been clear how auxiliary factors like eIF4B and eIF4G stimulate eIF4A and how this contributes to the initiation process. Based on results from isothermal titration calorimetry, we propose a two-site model for eIF4A binding to an 83.5 kDa eIF4G fragment (eIF4G-MC), with a high- and a low-affinity site, having binding constants KD of ∼50 and ∼1000 nM, respectively. Small angle X-ray scattering analysis shows that the eIF4G-MC fragment adopts an elongated, well-defined structure with a maximum dimension of 220 Å, able to span the width of the 40S ribosomal subunit. We establish a stable eIF4A–eIF4B complex requiring RNA, nucleotide and the eIF4G-MC fragment, using an in vitro RNA pull-down assay. The eIF4G-MC fragment does not stably associate with the eIF4A–eIF4B–RNA-nucleotide complex but acts catalytically in its formation. Furthermore, we demonstrate that eIF4B and eIF4G-MC act synergistically in stimulating the ATPase activity of eIF4A.  相似文献   

13.
Eukaryotic translation initiation factor 4A (eIF4A) is a DEAD-box protein that participates in translation initiation. As an ATP-dependent RNA helicase, it is thought to resolve secondary structure elements from the 5′-untranslated region of mRNAs to enable ribosome scanning. The RNA-stimulated ATPase and ATP-dependent helicase activities of eIF4A are enhanced by auxiliary proteins, but the underlying mechanisms are still largely unknown. Here, we have dissected the effect of eIF4B and eIF4G on eIF4A RNA-dependent ATPase- and RNA helicase activities and on eIF4A conformation. We show for the first time that yeast eIF4B, like its mammalian counterpart, can stimulate RNA unwinding by eIF4A, although it does not affect the eIF4A conformation. The eIF4G middle domain enhances this stimulatory effect and promotes the formation of a closed eIF4A conformation in the presence of ATP and RNA. The closed state of eIF4A has been inferred but has not been observed experimentally before. eIF4B and eIF4G jointly stimulate ATP hydrolysis and RNA unwinding by eIF4A and favor the formation of the closed eIF4A conformer. Our results reveal distinct functions of eIF4B and eIF4G in synergistically stimulating the eIF4A helicase activity in the mRNA scanning process.  相似文献   

14.
15.
Canine alpha3 and alpha4 chains of collagen type IV genes (COL4A3 and COL4A4) are expressed in the renal glomerular basement membrane, where they provide a critical structural and functional matrix for other basement membrane components. These genes are candidates for hereditary nephritis (Alport syndrome) in several dog breeds (e.g. English Cocker Spaniel and Bull Terrier). Using RACE and PCR, the cDNA of both genes was cloned and sequenced. Both COL4A3 and COL4A4, as well as canine NPPC (Natriuretic Peptide Precursor C), were mapped to CFA25 using an RH panel. Conservation of the tight linkage of COL4A3 and COL4A4 as seen in human and mouse was verified in the dog. Intron-exon boundaries in both genes were determined by BLAST analysis of the Canis Familiaris Trace Archive. The elucidation of the cDNA sequences, genomic organization and the open reading frames of canine COL4A3 and COL4A4 provide the groundwork for screening these genes for mutations in hereditary nephritis in dogs.  相似文献   

16.
Conversion of leukotrienes A4 to C4 in cell-free systems   总被引:2,自引:0,他引:2  
A procedure for assaying leukotriene C4 synthase activity in cell-free extracts has been presented. Leukotriene A4 methyl ester was as active a substrate as leukotriene A4 (Na salt) for the synthesis. The methyl ester is the substrate of choice, because (1) it is more stable than the sodium salt, (2) it is not a substrate of epoxide hydrolase for leukotriene B4 synthesis, and (3) it gives a lower blank than an equimolar concentration of leukotriene A4. The enzyme activity in rat liver, guinea pig and human lungs, and human nasal polyp was chiefly membrane-bound, although the cytosol contained some activity.  相似文献   

17.
18.
Single-nucleotide polymorphisms (SNPs) in the 9p21.3 locus have recently been demonstrated to be strongly associated with atherosclerosis. However, the pathophysiology of this locus is insufficiently studied. Here, the methylation profile of the nearest mapped genes for cyclin-dependent kinase inhibitors CDKN2A (p16INK4a, p14ARF) and CDKN2B (p15INK4b) in the tissues of the carotid artery in patients with atherosclerosis was evaluated for the first time. Aberrant DNA methylation of the analyzed loci was not established in either the atherosclerotic plaques or in the tissues from the macroscopically intact vascular wall in the same patients.  相似文献   

19.
27-Oxomilbemycins A3 and A4 and 27-hydroxymilbemycins A3 and A4 were identified as metabolites in soil metabolism studies of milbemycins A3 and A4. Chemical derivation methods were developed to synthesize 27-oxomilbemycins A3 and A4 and 27-hydroxymilbemycins A3 and A4 from milbemycins A3 and A4. In addition, 27-alkoxymilbemycin derivatives were also synthesized from the same precursors. Some of the synthesized compounds displayed satisfactory acaricidal activity against the organophosphorus-sensitive two-spotted spider mite (Tetranychus urticae), but did not have superior activity to corresponding milbemycins A3 and A4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号