首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between muscarinic receptor activation of phosphoinositide hydrolysis and the sequestration of cell surface muscarinic receptors has been examined for both intact and digitonin-permeabilized human SK-N-SH neuroblastoma cells. Addition of the aminosteroid 1-[6-[[17 beta-3-methoxyestra-1,3,5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U-73122) to intact cells resulted in the inhibition of oxotremorine-M-stimulated inositol phosphate release and of Ca2+ signaling by greater than 75%. In contrast, when phospholipase C was directly activated by the addition of the calcium ionophore ionomycin, inclusion of U-73122 had little inhibitory effect. Addition of U-73122 to intact cells also inhibited the agonist-induced sequestration of cell surface muscarinic receptors and their subsequent down-regulation with an IC50 value (4.1 microM) similar to that observed for inhibition of inositol phosphate release (3.7 microM). In contrast, when oxotremorine-M-stimulated phosphoinositide hydrolysis was inhibited by depletion of extracellular Ca2+, no reduction in the extent of receptor sequestration was observed. When introduced into digitonin-permeabilized cells, U-73122 more markedly inhibited inositol phosphate release elicited by either oxotremorine-M or guanosine-5'-O-(3-thiotriphosphate) than that induced by added Ca2+. Addition of oxotremorine-M to permeabilized cells resulted in muscarinic receptor sequestration and down-regulation. Both the loss of muscarinic acetylcholine receptors and activation of phosphoinositide hydrolysis in permeabilized cells were inhibited by the inclusion of guanosine-5'-O-(2-thiodiphosphate). The results indicate that the agonist-induced sequestration of muscarinic acetylcholine receptor in SK-N-SH cells requires the involvement of a GTP-binding protein but not the production of phosphoinositide-derived second messenger molecules.  相似文献   

2.
It had previously been thought that muscarinic cholinergic receptors utilize an influx of extracellular calcium for activation of adrenomedullary catecholamine secretion. However, it has recently been demonstrated that muscarinic receptors on isolated adrenal chromaffin cells can elevate cytosolic free calcium levels in a manner independent of extracellular calcium, presumably by mobilizing intracellular calcium stores. We now demonstrate that muscarinic receptor-mediated catecholamine secretion from perfused rat adrenal glands can occur under conditions of extracellular calcium deprivation that are sufficient to block both nicotine- and electrically stimulated release. Three independent conditions of extracellular calcium deprivation were used: nominally calcium-free perfusion solution (no calcium added), EGTA-containing calcium-free perfusion solution, and perfusion solution containing the calcium channel blocker verapamil. Secretion was evoked from the perfused glands by either transmural electrical stimulation or injection of nicotine or muscarine into the perfusion stream. Each condition of calcium deprivation was able to block nicotine- and electrically stimulated catecholamine release in an interval that left muscarine-evoked release largely unaffected. The above results demonstrate that muscarine-evoked catecholamine secretion from perfused rat adrenal glands can occur in the absence of extracellular calcium, presumably by mobilization of intracellular calcium. The latter may be due to muscarinic receptor-mediated generation of inositol trisphosphate.  相似文献   

3.
Abstract: Conventional secretory processing of the amyloid precursor protein is nonamyloidogenic, releasing carboxyl-terminus-truncated amyloid precursor protein derivatives while cleaving the amyloid β-peptide within its sequence. Alternative processing routes are potentially amyloidogenic, yielding the amyloid β-peptide segment intact. In continuous cell lines, secretory processing of the amyloid precursor protein is regulated by both protein kinase C and muscarinic receptor stimulation. However, the first and second messenger systems that regulate amyloid precursor protein release in central neurons are still under investigation. In the present investigation, we examined whether or not first and second messengers of cholinergic neurotransmission increase production of soluble derivatives of the amyloid precursor protein in primary cultures of rat cortical neurons. Activation of protein kinase C by the phorbol esters phorbol 12,13-dibutyrate and phorbol 12-myristate 13-acetate increased production of the soluble form of the amyloid precursor protein dramatically. In contrast, activation of muscarinic receptors by oxotremorine-M or carbachol did not result in a significant increase in amyloid precursor protein release. Similarly, chemically induced depolarization using 35 m M KCI did not alter production of soluble amyloid precursor protein derivatives. Our data suggest that although protein kinase C stimulation plays an important role in regulating release of the amyloid precursor protein, cholinergic neurotransmission does not regulate its release in cultured rat cortical neurons.  相似文献   

4.
Abstract: Measurements were made of the effects of muscarinic agents on endogenous levels of cyclic AMP and cyclic GMP, and the turnover of radiolabeled inositol phosphates in the abdominal nervous system of larval Manduca sexta . Cyclic AMP levels were increased by treatment with 3-isobutyl-1-methylxanthine or tetrodotoxin, but the muscarinic agonist oxotremorine-M and the muscarinic antagonist scopolamine had no consistent effects. In contrast, cyclic GMP levels were significantly increased by oxotremorine-M and by oxotremorine-M in the presence of 3-isobutyl-1-methylxanthine and tetrodotoxin but not in the presence of scopolamine. Using lithium to inhibit the recycling of inositol phospholipid metabolites in isolated nerve cords, we detected a small but consistent increase in inositol phosphate production by oxotremorine-M. The primary inositol metabolite generated during a 5-min exposure to oxotremorine-M co-eluted from ion-exchange columns with inositol-1-monophosphate, although other more polar metabolites were also detected. This agonist-evoked increase in inositol phosphate production was unaffected by tetrodotoxin but inhibited by scopolamine, suggesting that it is directly mediated by muscarinic receptors. Further evidence for coupling between muscarinic receptors and inositol metabolism was obtained using a cell-free preparation of nerve cord membranes labeled with [3H]inositol. Incubation with oxotremorine-M evoked a significant increase in labeled inositol bisphosphate, consistent with muscarinic receptors coupling to phosphatidylinositol metabolism. The accumulation of inositol bisphosphate in cell-free preparations suggests that the normal breakdown to inositol monophosphate requires cytosolic components. Together, these results indicate that muscarinic acetylcholine receptors in Manduca couple predominantly to the inositol phospholipid signaling system, although some receptors may modulate cyclic GMP.  相似文献   

5.
Agonist occupancy of muscarinic cholinergic receptors in human SH-SY-5Y neuroblastoma cells elicited two kinetically distinct phases of phosphoinositide hydrolysis when monitored by either an increased mass of inositol 1,4,5-trisphosphate, or the accumulation of a total inositol phosphate fraction. Within 5s of the addition of the muscarinic agonist, oxotremorine-M, the phosphoinositide pool was hydrolyzed at a maximal rate of 9.5%/min. This initial phase of phosphoinositide hydrolysis was short-lived (t1/2=14s) and after 60s of agonist exposure, the rate of inositol lipid breakdown had declined to a steady state level of 3.4%/min which was then maintained for at least 5–10 min. This rapid, but partial, attenuation of muscarinic receptor stimulated phosphoinositide hydrolysis occurred prior to the agonist-induced internalization of muscarinic receptors.Abbreviations I(1,4,5)P3 inositol 1,4,5-trisphosphate - IP total inositol phosphate fraction - IPL total inositol lipid fraction - mAChR muscarinic acetylcholine receptor - NMS N-methylscopolamine - Oxo-M oxotremorine-M - PI phosphatidylinositol - PIP phosphatidylinositol 4-phosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PPI phosphoinositide - QNB quinuclidinyl benzilate Special issue dedicated to Dr. Bernard W. Agranoff  相似文献   

6.
The alpha 1-adrenergic receptor has been shown to mediate the release of arachidonic acid in FRTL5 thyroid cells and MDCK kidney cells. In primary cultures of spinal cord cells, norepinephrine stimulated release of arachidonic acid (from neurons only) and turnover of inositol phospholipids (from neurons and glia) via alpha 1-adrenergic receptors. These two responses were dissociated by treatment with phorbol ester and pertussis toxin, which inhibited production of inositol phosphates with no appreciable effect on release of arachidonic acid. Extracellular calcium was required for release of arachidonic acid, but not for production of inositol phosphates. The calcium channel blockers nifedipine and verapamil inhibited release of arachidonic acid only. However, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a compound that blocks intracellular calcium release, diminished production of inositol phosphates, but had little effect on release of arachidonic acid. These results suggest that alpha 1-adrenergic receptors couple to release of arachidonic acid in primary cultures of spinal cord cells by a mechanism independent of activation of phospholipase C, possibly via the activation of phospholipase A2.  相似文献   

7.
Chromaffin cells of bovine adrenal medulla release catecholamines in response to activation of nicotinic ACh receptors which open voltage-sensitive calcium channels. Catecholamine secretion by exocytosis requires an increase in cytosolic free calcium. The cells also possess muscarinic ACh receptors but muscarinic agents do not provoke catecholamine release. Quin-2 studies show that they do not increase cytosolic free Ca2+ concentration, but unlike the nicotinic agents, they cause phosphoinositide hydrolysis. Muscarinic stimulation leads to rapid loss of labelled phosphatidylinositol 4-phosphate and of phosphatidylinositol 4,5-bisphosphate. At the same time there is release of inositol trisphosphate, inositol bisphosphate and inositol phosphate. In a number of other cells inositol trisphosphate may act as a second messenger releasing Ca2+ from storage sites in the endoplasmic reticulum but this is not its function in bovine chromaffin cells.  相似文献   

8.
The ability of muscarinic receptors, present in either the cell surface or sequestered compartments of intact human SK-N-SH neuroblastoma cells, to stimulate phosphoinositide hydrolysis has been examined. When cells were first exposed to carbachol for 1 h at 37 degrees C, approximately 50% of the cell surface receptors became sequestered, and this was accompanied by a comparable reduction in the subsequent ability of muscarinic agonists to stimulate phosphoinositide turnover, as monitored by the release of labeled inositol phosphates at 10 degrees C. At this temperature, muscarinic receptor cycling between the two cell compartments is prevented. Upon warming the carbachol-pretreated cells to 37 degrees C, receptor cycling is reinitiated and stimulated phosphoinositide turnover is fully restored within 5-8 min. When measured at 10 degrees C, the reduction of stimulated phosphoinositide turnover observed following carbachol pretreatment was similar in magnitude for both hydrophilic (carbachol, oxotremorine-M) and lipophilic (arecoline, oxotremorine-2, and L-670,548) agonists. The loss of response for both groups of agonists could be prevented if the incubation temperature was maintained at 37 degrees C, rather than at 10 degrees C. At the latter temperature carbachol pretreatment of SK-N-SH cells reduced the maximum release of inositol phosphates elicited by either carbachol or L-670,548 but not the agonist concentrations required for half-maximal stimulation. Radioligand binding studies, carried out at 10 degrees C, indicate that following receptor sequestration, significantly higher concentrations of carbachol were required to occupy the available muscarinic receptor sites. In contrast the lipophilic full agonist L-670,548 recognized receptors present in control and carbachol-pretreated cells with comparable affinities. Analysis of the inositol lipids present after carbachol pretreatment indicate that only a minimal depletion of the substrates necessary for phospholipase C activation had occurred. The results indicate that the agonist-induced sequestration of muscarinic receptors from the cell surface results in a loss of stimulated phosphoinositide hydrolysis when measured under conditions in which the return of the sequestered receptors to the cell surface is prevented. Thus, only those receptors present at the cell surface are linked to phospholipase C activation.  相似文献   

9.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

10.
Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors.  相似文献   

11.
The biochemical and pharmacological characteristics of receptor-stimulated phosphoinositide (PPI) hydrolysis in human SK-N-MC neuroepithelioma cells have been examined. Of 11 ligands tested, the addition of four, i.e., norepinephrine, oxotremorine-M, endothelin-1, and ATP, each resulted in an increased release (three- to eightfold) of inositol phosphates from [3H]inositol-prelabeled cells. Agonist-stimulated PPI turnover was sustained for at least 30 min and required the addition of Ca2+ for full effect. An increased release of inositol phosphates could also be elicited by the addition of the Ca2+ ionophore, ionomycin. All four agonists enhanced the release of radiolabeled inositol mono- and bisphosphates, inositol 1,3,4-trisphosphate, and inositol tetrakisphosphate. Increases in inositol 1,4,5-trisphosphate were smaller and only consistently observed in the presence of norepinephrine or oxotremorine-M. Norepinephrine-stimulated PPI turnover was potently inhibited by prazosin, WB-4101, and 5-methylurapidil (Ki less than 2.5 nM), but was relatively insensitive to chlorethylclonidine pretreatment. This pharmacological profile is consistent with the involvement of an alpha 1A-receptor subtype. The presence of an M1 muscarinic cholinergic receptor is also indicated, because pirenzepine blocked oxotremorine-M-stimulated inositol phosphate release (Ki = 35 nM) with a 30-fold greater potency than the M2-selective antagonist, AF-DX 116. Of the three endothelins tested, only the addition of endothelin-1 and endothelin-2 promoted PPI hydrolysis, whereas endothelin-3 was essentially inactive. A P2 nucleotide receptor of broad agonist specificity is also present on these cells and activates PPI turnover in the absence of a generalized increase in plasma membrane permeability. These results indicate that SK-N-MC cells express at least four PPI-linked receptors. Because the functional coupling of three of these receptors, i.e., alpha 1A-adrenergic, endothelin, and P2 nucleotide, has not been extensively characterized previously in neural tissues, the SK-N-MC cell line may provide a useful model system for studies of these receptors and their regulation.  相似文献   

12.
Stimulation of muscarinic M3 and M2 receptors on gastrointestinal smooth muscle elicits contraction via activation of G proteins that are coupled to a diverse set of downstream signaling pathways and effector proteins. Many studies suggest a canonical excitation-contraction coupling pathway that includes activation of phospholipases, production of inositol 1,4,5-trisphosphate and diacylglycerol, release of calcium from the sarcoplasmic reticulum, activation of L-type calcium channels, and activation of nonselective cation channels. These events lead to elevated intracellular calcium concentration, which activates myosin light chain kinase to phosphorylate and activate myosin II thus causing contraction. In addition, muscarinic receptors are coupled to signaling pathways that modulate the effect of activator calcium. The Rho/Rho kinase pathway inhibits myosin light chain phosphatase, one of the key steps in sensitization of the contractile proteins to calcium. Phosphatidylinositol 3-kinases and Src family tyrosine kinases are also activated by muscarinic agonists. Src family tyrosine kinases regulate L-type calcium and nonselective cation channels. Src activation also leads to activation of ERK and p38 MAPKs. ERK MAPKs phosphorylate caldesmon, an actin filament binding protein. P38 MAPKs activate phospholipases and MAPKAP kinase 2/3, which phosphorylate HSP27. HSP27 may regulate cross-bridge function, actin filament formation, and actin filament attachment to the cell membrane. In addition to the well-known role of M3 muscarinic receptors to regulate myoplasmic calcium levels, the integrated effect of muscarinic activation probably also includes signaling pathways that modulate phospholipases, cyclic nucleotides, contractile protein function, and cytoskeletal protein function.  相似文献   

13.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

14.
Activation of M3 muscarinic receptors in HT-29 cells by carbachol rapidly increases polyphosphoinositide breakdown. Pretreatment of these cells with carbachol (0.1 mM) for 5 h completely inhibits the subsequent ability of carbachol to increase [3H]inositol monophosphate ([3H]InsP) accumulation, paralleled by a total loss of muscarinic binding sites. In contrast, protein kinase C (PK-C)-mediated desensitization by incubation with phorbol esters [PMA (phorbol 12-myristate 13-acetate)], leading to a time- and dose-dependent inhibition of cholinergically stimulated InsP release (95% inhibition after 4 h with 0.1 microM-PMA), is accompanied by only a 40% decrease in muscarinic receptor binding, which suggests an additional mechanism of negative-feedback control. Neither carbachol nor PMA pretreatment had any effect on receptor affinity. Incubation with carbachol for 15 min caused a small increase of membrane-associated PK-C activity (15% increase, P less than 0.05) as compared with the potency of phorbol esters (PMA) (3-4-fold increase, P less than 0.01). Long-term incubation (4-24 h) with PMA resulted in a complete down-regulation of cytosolic and particulate PK-C activity. Stimulation of InsP release by NaF (20 mM) was not affected after a pretreatment with phorbol esters or carbachol, demonstrating an intact function of G-protein and phospholipase-C (PL-C) at the effector side. Determination of PL-C activity in a liposomal system with [3H]PtdInsP2 as substrate, showed no change in PL-C activity after carbachol (13 h) and short-term PMA (2.5 h) pretreatment, whereas long-term preincubation with phorbol esters (13 h) caused a small but significant decrease in PL-C activity (19%, P less than 0.05). Our results indicate that agonist-induced desensitization of phosphoinositide turnover occurs predominantly at the receptor level, with a rapid loss of muscarinic receptors. Exogenous activation of PK-C by phorbol esters seems to dissociate the interaction between receptor and G-protein/PL-C, without major effects on total cellular PL-C activity.  相似文献   

15.
The cardiac inhibitory effects (negative inotropic and chronotropic) of muscarinic cholinergic stimulation by acetylcholine (ACh) are well established. They are due to electrophysiological modifications involving (1) the activation of the resting K+ channel showing inward going rectification properties; (2) the reduction of the inward calcium current (I Ca). Recent works on isolated myocardial cells allowed to investigate the molecular mechanisms involved between muscarinic cholinergic receptors activation and effector (the ionic channel). The results indicate that muscarinic receptor communicates with the K+ channel, via GTP-binding protein (Ni, o or G) and that does not involve adenylate-cyclase. In contrast to the direct muscarinic activation of K+ channel, ACh decreases I Ca by inhibiting, via Ni, the cAMP production. The inhibition of I Ca is larger in the beta-stimulated cells.  相似文献   

16.
In the presence of lithium, carbamylcholine chloride (carbachol) and epinephrine increase the accumulation of inositol monophosphate severalfold in hippocampal slices from the rat. The stimulation by carbachol (EC50, 31 microM) is mediated by muscarinic receptors, whereas the effects of epinephrine (EC50, 2 microM) are due to activation of alpha 1-adrenergic receptors. The responses of epinephrine and carbachol are additive, even under conditions that significantly reduce the levels of phosphoinositides and free inositol, suggesting that the muscarinic and adrenergic receptors may be located on separate cells. At concentrations that saturate their respective receptors, epinephrine induces an increase in inositol monophosphate that is linear with time to at least 60 min, whereas the response to carbachol begins to reach a plateau by 20-40 min. When hippocampal slices are preincubated with saturating concentrations of carbachol, the subsequent response to carbachol is reduced by 42%. However, preincubation with carbachol or epinephrine has no effect on the subsequent response to epinephrine. Despite the lack of adrenergic desensitization by this paradigm, preexposure of hippocampal slices to the tumor-promoting phorbol ester, phorbol 12,13-dibutyrate, reduces the response to epinephrine to a significantly greater degree (57%) than it reduces the muscarinic response (25%). These studies indicate that, although they utilize the same second messenger, the muscarinic and alpha 1-adrenergic receptors of hippocampal slices have different characteristics and regulatory mechanisms.  相似文献   

17.
Abstract: The mechanism whereby agonist occupancy of muscarinic cholinergic receptors elicits an increased tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin has been examined. Addition of oxotremorine-M to SH-SY5Y neuroblastoma cells resulted in rapid increases in the phosphorylation of FAK ( t 1/2 = 2 min) and paxillin that were independent of integrin-extracellular matrix interactions, cell attachment, and the production of phosphoinositide-derived second messengers. In contrast, the increased tyrosine phosphorylations of FAK and paxillin were inhibited by inclusion of either cytochalasin D or mevastatin, agents that disrupt the cytoskeleton. Furthermore, phosphorylation of FAK and paxillin could be prevented by addition of either wortmannin or LY-294002, under conditions in which the synthesis of phosphatidylinositol 4-phosphate was markedly attenuated. These results indicate that muscarinic receptor-mediated increases in the tyrosine phosphorylation of FAK and paxillin in SH-SY5Y neuroblastoma cells depend on both the maintenance of an actin cytoskeleton and the ability of these cells to synthesize phosphoinositides.  相似文献   

18.
Structural analogs of oxotremorine have been employed to examine the relationship between the binding of agonists to muscarinic receptors in guinea pig cerebral cortex and the enhancement of inositol lipid turnover. Large differences were observed in the ability of the analogs to stimulate inositol phospholipid turnover, as measured both by the increase in labeling of phosphatidate and phosphatidylinositol from 32Pi in a nerve-ending fraction, and by the stimulated release of labeled inositol phosphates from slices of cerebral cortex, a direct measure of inositol lipid breakdown. The quaternary N+ analogs, oxotremorine-M and its N-methylacetamide derivative, were five to thirteen times as effective as oxotremorine. In contrast, methyl substitution of the pyrrolidone ring of oxotremorine resulted in a complete loss of agonist activity. Receptor occupancy data obtained from the displacement of labeled quinuclidinyl benzilate bound to receptors in a nerve-ending fraction indicated that the more efficacious agonists interacted with at least two affinity forms of the muscarinic receptor, whereas the less effective agonists bound to a single affinity form. Dose-response curves obtained in the presence of oxotremorine-M for inositol lipid turnover in both the nerve-ending fraction and slice preparation correlated with the occupancy of a single low-affinity form of the muscarinic receptor. The results suggest that the differential abilities of analogs of oxotremorine to enhance inositol lipid turnover in brain are closely related to the extent of agonist-induced conformational change in the muscarinic receptor.  相似文献   

19.
Although activation of muscarinic cholinergic receptors on 1321N1 human astrocytoma cells results in a linear accumulation of inositol phosphates for up to 60 min in the presence of LiCl [Masters, Quinn & Brown (1985) Mol. Pharmacol. 27, 325-332], activation of H1-histamine receptors resulted in an increase in total inositol phosphate formation that was maintained for less than 5 min. The effects of stimulation of these two receptors on accumulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] were also examined. Incubation of 1321N1 cells with carbachol resulted in a rapid accumulation of all three inositol phosphates, reaching a maximum within 30 s; this elevated value was maintained for up to 60 min. The rate of disappearance of Ins(1,3,4)P3 from carbachol-treated cells after the addition of atropine paralleled or exceeded the rate of disappearance of Ins(1,4,5)P3. Although the initial rates of accumulation of Ins(1,4,5)P3, Ins(1,3,4)P3 and Ins(1,3,4,5)P4 in the presence of histamine were similar to that observed with carbachol, the amounts of these inositol phosphates had returned to control values within 5 min after the addition of histamine. The results indicate that, although the acute effects of muscarinic receptor and H1-histamine receptor stimulation on phosphoinositide hydrolysis are very similar, the histamine receptor is desensitized rapidly, whereas the muscarinic receptor is not. This effect on histamine-receptor function is apparently homologous, since preincubation of 1321N1 cells with histamine did not decrease the subsequent response to carbachol.  相似文献   

20.
Hormonally stimulated secretion of ACTH from AtT-20 mouse pituitary tumor cells is a cyclic AMP-mediated process. The presence of inhibitory cholinergic muscarinic receptors on these cells was recently reported, and in this study, the relationship between the activation of these receptors and the consequent inhibition of cyclic AMP formation and ACTH secretion was investigated. The muscarinic agent, oxotremorine, antagonized both cyclic AMP synthesis and ACTH secretion in response to corticotropin-releasing factor (CRF), vasoactive intestinal peptide, a 27-amino acid peptide with an N-terminal histidine and a C-terminal isoleucine amide, and forskolin. Other muscarinic agents, carbachol and bethanechol, had similar inhibitory effects. The cholinomimetics reduced basal (unstimulated) ACTH secretion without decreasing basal cyclic AMP levels, and also antagonized hormone release in response to cyclic AMP-independent agonists such as K+, A-23187, and phorbol ester. Scopolamine reversed the inhibitory effects of the muscarinic agents on basal and stimulated ACTH secretion and cyclic AMP formation. Increasing the extracellular calcium concentration reversed the muscarinic antagonism of basal and CRF-stimulated hormone release without affecting the cyclic AMP response. Pertussis toxin pretreatment attenuated the inhibitory effects of the muscarinic agents on forskolin-stimulated cyclic AMP synthesis and ACTH secretion as well as the inhibitory effect of carbachol on basal ACTH release. The data suggest that cyclic AMP is an essential mediator in the ACTH secretory pathway, but that an alternate cyclic AMP-independent ACTH pathway also exists in the clonal cells, and that both pathways may be modulated by a common postcholinergic receptor mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号