首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amblyomma triste is the most prevalent tick species reported in human tick bites in Uruguay and has been found to be infected with Rickettsia parkeri, but no other microorganisms have been reported from this tick. A sample of 254 adults of A. triste was collected by flagging on vegetation in suburban areas in southern Uruguay. Pools of five ticks were assembled and a screening for the DNA from the resulting 51 pools was realized by PCR assays using primers for amplifying a fragment of 16S rRNA gene for members of Anaplasmataceae. Seventeen pools were positive (33%) and the sequenciation of the gene fragment amplified revealed the presence of a putative new Alpha-Proteobacterium (denominated Atri-uru). The phylogenetic analysis showed that this microorganism is closely related to the symbiont of I. ricinus denominated ‘Candidatus Midichloria mitochondrii’ and other associated organisms. This rickettsial symbiont of ticks is included in a recent new clade proposed for the Alpha subclass of the Proteobacteria. The discovery of this bacterium in A. triste is the first evidence of this group of Rickettsiales detected in the Genus Amblyomma, and the first record in South America. Also, in two of 17 positive samples a Gamma-Proteobacterium related to Francisella-like organisms was detected.  相似文献   

2.
To explore the potential role of Ixodes ricinus as the presumed vector of Bartonella henselae in eastern Poland, ticks collected in various geographic locations were examined for the presence of B. henselae, and the results were matched against the prevalence of anti‐B. henselae antibodies in individuals occupationally exposed to tick bites. The presence of Bartonella DNA was investigated by PCR in a total of 1,603 unfed Ixodes ricinus ticks. The presence of IgG antibodies against B. henselae was investigated in serum samples from 332 people occupationally exposed to tick bites (94 farmers and 238 forestry workers). The total prevalence of B. henselae in ticks was 1.7%; the infection rates in males (3.1%) and females (2.7%) were nearly ten times greater than in nymphs (0.3%). The prevalence of seropositive results in the risk group (30.4%), farmers (27.7%) and forestry workers (31.5%), was significantly greater compared to the control group (8.9%). The results showed a weak positive correlation between the degree of infection of ticks and humans living in the same geographic region. The lack of a direct relationship indicates that exposure to tick bites is only one of the factors contributing to the significant preponderance of a seropositive response to B. henselae in the forestry workers and farmers over the control group. Other factors must be considered, such as contact with cats, which are popular domestic animals in Polish villages, and exposure to cat fleas.  相似文献   

3.
Characterizing the tick-borne microorganism communities of Ixodes ricinus (sheep tick) and Ixodes persulcatus (taiga tick) from the I. ricinus species complex in distinct geographical regions of Eastern Europe and European Russia, we demonstrated differences between the two ticks. Taiga ticks were more frequently mono- and co-infected than sheep ticks: 24.4 % (45/184 tested ticks) versus 17.5 % (52/297) and 4.3 % (8/184) versus 3.4 % (10/297), respectively. Ginsberg co-infection index values were significant at the various sites. Diversity of the tick-borne microorganism communities was estimated by the Shannon index, reaching values of 1.71 ± 0.46 and 1.20 ± 0.15 at the sheep-tick and the taiga-tick harbored sites, respectively. Richness of the tick-borne microorganism community in the sheep tick collection sites was about twice the value of the taiga tick collection sites. Future investigations are warranted to further characterize the peculiarities of the tick-borne microorganism communities among the ticks of the Ixodes ricinus complex.  相似文献   

4.
Ticks are the main vectors of rickettsiae of the spotted fever group, as well as of a variety of other Rickettsiales, including bacteria of the genus Anaplasma, that might cause diseases in humans and animals. Here we present the result of a survey for ticks and for tick-associated Rickettsiales in the Emilia Romagna region (Northern Italy). The study was focused on ticks collected from wild-hunted animals. Out of 392 ticks collected from these animals, 282 (72%) were identified as Ixodes ricinus, 110 (28%) as Dermacentor marginatus. The former was found on four vertebrate species, whereas the latter appeared more specific for wild boar. The presence of rickettsiae was demonstrated in 22.5% of I. ricinus (57/253) and in 29% of D. marginatus (32/110). Five ticks of the species I. ricinus were also positive for Anaplasma phagocytophilum (2%). In addition, we collected ticks by dragging in a natural park of the same region. All of the ticks captured by dragging were identified as I. ricinus. Thirty-six out of 200 analyzed ticks proved positive for Rickettsia monacensis and R. helvetica (16.5 and 1.5%, respectively). Our results highlight that that ticks present in wild areas, widely exploited for recreation and hunting in Emilia-Romagna, represent a risk for the transmission of spotted fevers and anaplasmosis to humans.  相似文献   

5.
Borrelia specimens were revealed in taiga ticks Ixodes persulcatus collected in the wild by flagging and also in ticks provided by the Vaccination section of the Novosibirsk Scientific Center, Siberian Branch of the Russian Academy of Sciences (NSC); these ticks were obtained from patients attacked by ticks. Isolation of borrelias in the BSK-H medium had demonstrated the presence of B. garinii, B. afzelii, and B. miyamotoi in the territory of NCS. B. miyamotoi isolates were unstable, loosing their growth ability during subsequent cultivation. DNA of the three above species was detected by PCR in tick samples collected by flagging and obtained from humans. DNA of B. garinii was recorded in ticks more often; DNA of B. afzelii was found less frequently; B. miyamotoi DNA was detected in the smallest number of ticks. In ticks collected by flagging, DNA of B. garinii, B. afzelii, and B. miyamotoi was detected in 38.6%, 9.9%, and in 3.9% of specimens, respectively. In ticks collected from attacked humans, the number of positive tests was lower; e.g., DNA of B. garinii, B. afzelii, and B. miyamotoi was detected in 24.2%, 6.9%, and in 5.6% of samples, respectively. Mixed infection of ticks with two Borrelia species was also detected; DNA of B. miyamotoi and of B. garinii was detected in mixed infections more frequently.  相似文献   

6.
Research into tick‐borne diseases implies vector sampling and the detection and identification of microbial pathogens. Ticks were collected simultaneously from dogs that had been exposed to tick bites and by flagging the ground in the area in which the dogs had been exposed. In total, 200 ticks were sampled, of which 104 came from dogs and 96 were collected by flagging. These ticks were subsequently examined for DNA of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia spp. and Babesia canis. A mixed sample of adult ticks and nymphs of Ixodes ricinus (Ixodida: Ixodidae) and Haemaphysalis concinna (Ixodida: Ixodidae) was obtained by flagging. Female I. ricinus and adult Dermacentor reticulatus (Ixodida: Ixodidae) ticks dominated the engorged ticks removed from dogs. Rickettsia spp. were detected in 17.0% of the examined ticks, A. phagocytophilum in 3.5%, B. canis in 1.5%, and B. burgdorferi s.l. in 16.0%. Ticks with multiple infections were found only among the flagging sample. The ticks removed from the dogs included 22 infected ticks, whereas the flagging sample included 44 infected ticks. The results showed that the method for collecting ticks influences the species composition of the sample and enables the detection of a different pattern of pathogens. Sampling strategies should be taken into consideration when interpreting studies on tick‐borne pathogens.  相似文献   

7.
From January 2002 to December 2004, 152 ticks were collected from 40 wild birds recovered in Santo André Natural Reserve and Monsanto Forestal Park, Portugal mainland. Five ticks species were identified from 22 species of birds, and new host record were provided for some species. In addition, 32 (21%) ticks were screened by PCR to detect infections with agents belonging to order Rickettsiales: Anaplasma phagocytophilum, Ehrlichia chaffeensis, and Rickettsia spp. PCR amplicons were obtained in 5 (15.6%) tick samples. Rickettsia DNA exhibiting gltA sequences similar to those of Rickettsia aeschilimannii, R. helvetica and R. massiliae were identified in Hyalomma marginatum, Ixodes ventalloi and in Rhipicephalus turanicus, respectively. This is the first report of rickettsiae infections in ticks collected from wild birds in Portugal. Giving the results presented above wild birds play an important role in the maintenance and dissemination of several tick species and associated rickettsiae.  相似文献   

8.
In the present study, PCR has been applied to detect and analyze DNA of Babesia spp. extracted from Ixodes ricinus ticks. Collection of I. ricinus was made in 6 forested areas of Zachodniopomorskie Voivodship, Poland, during 2 seasonal peaks of tick activity, i.e., spring and autumn, 2001. In total, 1,328 I. ricinus were collected and processed for PCR with F34 and R323 primers. Babesia spp. was detected in 28 (2% of 1,328 tested) ticks; 26 were identified as B. divergens. The other 2 were identified as B. microti. PCR was conducted with 18S rRNA specific primers and sequencing was processed to precisely identify and compare these isolates with B. microti and B. divergens sequences from Europe, North America, and Asia obtained from the GenBank. Analysis revealed that sequences of B. microti from northwestern Poland are almost identical (99.94%) with those referred to as "Munich strain"; both form a clade different from other European strains, as well as those from Asia and North America (called B. microti, sensu stricto). An investigation performed with B. divergens sequences showed that the sequence from northwestern Poland is 99.94% homologous to an isolate from Ireland ("Purnel"), and differs in just a few nucleotides from other European sequences. Phylogenetic analysis revealed that the sequence of B divergens isolated from Polish ticks form a group that comprise 4 European sequences from Great Britain and Ireland and is, therefore, closely related to other European and North American B. divergnens sequences.  相似文献   

9.
Detection of DNA of Borrelia burgdorferi sensu lato was performed by PCR in taiga ticks Ixodes persulcatus, in blood samples and skin bioptates of small forest mammals, and in blood and urine samples of humans after attaching of ticks events. In Novosibirsk region both in natural reservoir and in patients with Ixodes ticks-borne borreliosis DNA of Borrelia garinii and Borrelia afzelii are detected. DNA of these borrelia were detected in 8 from 72 of taiga ticks, in 36 from 298 of blood and skin samples of small forest mammals, and in 32 from 102 of human blood and urine samples. In all studied samples DNA of B. garinii from NT29 subgroup was predominated. Borrelia DNA in which sequence of intergenic spacer region was homologous to sequence Chy13p first detected in China has been detected in one blood sample from red-backed vole (Clethrionomys rutilus).  相似文献   

10.
Strains of a new flavivirus, for which the name Saumarez Reef Virus is proposed, were isolated from seabird ticks collected from four localities. Two strains were isolated from ticks of the species Ornithodoros capensis Neumann 1901 collected from the nests of Sooty Terns, Sterna fuscata Linnaeus 1766 on coral cays off the east coast of Queensland, Australia. The other three strains were isolated from ticks of the species Ixodes eudyptidis Maskell 1885 taken from two dead Silver Gulls Larus novaehollandiae Stephens 1826 in northern Tasmania. The new virus was compared serologically with 50 other flaviviruses at the Yale Arbovirus Research Unit and was found to be most closely related to Tyuleniy virus.  相似文献   

11.
In order to understand the natural situation of rickettsiae in the ticks in Japan, the rickettsial genes, gltA gene, rOmpA gene, and 17-kDa gene, were amplified from the ticks by nested PCR. The prevalences of rickettsial gltA genes among Haemaphysalis formosensis, H. longicornis, H. megaspinosa, Ixodes ovatus, H. flava, H. kitaokai, and I. persulcatus were 62, 57, 24, 24, 19, 13, and 10%, respectively; 26% (186/722) being the average. The gltA genes amplified from the ticks were classified into 9 genotypes (I to IX) by the difference in nucleotide sequences. Genotype I was detected from 7 species of ticks. Genotype II mainly was detected from H. longicornis and H. formosensis. Genotypes III and VII mainly were detected from H. flava and I. ovatus. The polarization in the distribution of genotypes among regions where the ticks were collected was not clear. Based on the phylogenetic analysis of the three genes presented here, genotypes I, III, and IV (detected from H. formosensis, H. hystricia, and I. ovatus ) are genetically close with each other, but rickettsiae of the same property still have not been isolated from ticks anywhere in the world. These genotypes should be considered as new species among SFG rickettsiae. Genotype II was identical with strain FUJ-98, genetically close to R. japonica which has been isolated from ticks in China. Genotype V was identical with R. felis and strain California 2 isolated from the cat flea. This is the first report on the detection of R. felis from ticks. Genotype VI detected from Ixodes sp. did not seem to belong to genus Rickettsia. Based on the previous antigenic data and the phylogenetic analysis presented here, Genotype VII should be considered a variant of R. helvetica and genotype VIII detected from I. ovatus and I. persulcatus were identical with R. helvetica. Genotype IX detected from I. nipponensis was genetically close to the strains IRS3, IRS4, and IrR/Munich isolated from I. ricinus in Slovakia and German.  相似文献   

12.
13.
The genus Anaplasma (Rickettsiales: Anaplasmataceae) includes species of medical and veterinary importance. The presence of Anaplasma spp. in ticks from birds, as well as in Haemaphysalis punctata (Ixodida: Ixodidae) specimens collected from cattle and vegetation in northern Spain was investigated. A total of 336 ticks from birds [174 Ixodes frontalis (Ixodida: Ixodidae), 108 H. punctata, 34 Hyalomma marginatum (Ixodida: Ixodidae), 17 Ixodes ricinus (Ixodida: Ixodidae) and three Ixodes spp.], and 181 H. punctata specimens collected from cattle (n = 71) and vegetation (n = 110) were analysed. Anaplasma bovis was detected in five H. punctata, including two from birds (1.9%) and three from vegetation (2.7%). Four I. frontalis (2.3%) (one co‐infected with ‘Candidatus Midichloria mitochondrii’) and one I. ricinus (5.9%) removed from birds, as well as four H. punctata (5.6%) collected from cattle showed Anaplasma phagocytophilum infection. In addition, Anaplasma centrale was found in two H. punctata, one from a cow (1.4%) and the other from vegetation (0.9%). This study represents the first evidence of the presence of A. bovis in European ticks, and reports the first detection of A. bovis and A. centrale in H. punctata, and the first finding of A. phagocytophilum and ‘Ca. Midichloria mitochondrii’ in I. frontalis.  相似文献   

14.
To obtain initial data on Borrelia burgdorferi sensu lato (Spirochaetales: Spirochaetaceae) in Ixodes ricinus (Ixodida: Ixodidae) ticks in Hamburg, Germany, 1400 questing ticks were collected by flagging at 10 different public recreation areas in 2011 and analysed using probe‐based quantitative real‐time polymerase chain reaction. The overall rate of infection with B. burgdorferi s.l. was 34.1%; 30.0% of adults were infected (36.7% of females and 26.0% of males), as were 34.5% of nymphs. Significant differences in tick infection rates were observed between the spring and summer/autumn months, as well as among sampling locations. Borrelia genospecies identification by reverse line blotting was successful in 43.6% of positive tick samples. The most frequent genospecies was Borrelia garinii/Borrelia bavariensis, followed by Borrelia afzelii, Borrelia valaisiana, B. burgdorferi sensu stricto, Borrelia spielmanii, Borrelia bissettii and Borrelia lusitaniae. Based on previously published data, co‐infection of Borrelia and Rickettsiales spp. was determined in 25.8% of ticks. Overall, 22.9% of ticks were co‐infected with Rickettsia spp. (Rickettsiales: Rickettsiaceae), 1.7% with Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and 1.2% with both pathogens. Study results show a high prevalence of Borrelia‐positive ticks in recreation areas in the northern German city of Hamburg and the potential health risk to humans in these areas should not be underestimated.  相似文献   

15.
Based on the results of RFLP-ribotyping, whole DNA/DNA hybridization and phylogenetic analysis of the 16S rRNA gene, we previously defined two genomic groups of spirochetes closely related to Borrelia burgdorferi sensu lato: group Hk501 for strains isolated from Ixodes tanuki ticks and group Ya501 for strains isolated from Ixodes turdus ticks. In this report, we propose that group Hk501 should be classified as Borrelia tanukii sp. nov. and group Ya501 as Borrelia turdae sp. nov. The alignment of previously published Borrelia 16S rRNA gene sequences led us to design species-specific PCR primer sets. The primers allowed the rapid identification of B. tanukii and B. turdae.  相似文献   

16.
Unfed adult ticks Ixodes persulcatus from five regions of Russia were examined by PCR method in order to analyze distribution and diversity of B. miyamotoi. B. miyamotoi DNA was found in 1.8, 2.9, 4.5, 2.3, and 2.5% of ticks from Leningrad, Sverdlovsk, Novosibirsk, and Irkutsk provinces, and from Khabarovsk Territory, respectively. Molecular typing of B. miyamotoi DNA was based on the partial sequencing of the 16S rRNA, p66, and glpQ genes. A single genetic variant of B. miyamotoi was detected in all the samples of ticks collected from five regions.  相似文献   

17.
Ticks are among the most important vectors of disease in the Northern Hemisphere, and a better understanding of their feeding behaviour and life cycle is critical to the management and control of tick-borne zoonoses. DNA-based tools for the identification of residual bloodmeals in hematophagous arthropods have proven useful in the investigation of patterns of host use in nature. Using a blind test approach, we challenged the utility of the DNA barcode library for the identification of vertebrate bloodmeals in engorged, field-collected Ixodes scapularis. Universal vertebrate primers for the COI barcode region successfully amplified DNA from the host bloodmeal and only rarely amplified tick DNA. Of the 61 field-collected ticks, conclusive genus- and species-level identification was possible for 72% of the specimens. In all but two cases, barcode-based identification of the bloodmeal was consistent with the morphological identification of the vertebrate host the ticks were collected from. Possible explanations for mismatches or ambiguities are presented. This study validates the utility of the DNA barcode library as a valuable and reliable resource for the identification of unknown bloodmeals in arthropod vectors of disease. Future directions aimed at the refinement of these techniques to gain additional information and to improve the amplification success of digested vertebrate DNA in tick bloodmeals are discussed.  相似文献   

18.
In our study, Borrelia were revealed in the taiga ticks Ixodes persulcatus collected on vegetation by flagging, as well as in the ticks removed from the people who asked for help in the vaccination center located in the Novosibirsk Scientific Center of the Siberian Branch of Russian Academy of Science (NS SB RAS). By the isolation of Borrelia on BSK-H medum, the occurrence of B. garinii, B. afzelii, and B. miyamotoi was established in the territory of NSC. B. miyamotoi isolates were unstable and lost their ability to growth in later passages. DNA of the same three species of Borrelia was detected by PCR in the samples of ticks, both collected on vegetation by flagging and removed from humans. DNA of B. garinii was recorded most often; DNA of B. afzelii was less frequent; and the least number of positive samples was shown for B. miyamotoi. In the ticks collected on vegetation by flagging, DNA of B. garinii was found in 38.6%, B. afzelii in 9.9%, and B. miyamoboi in 3.9% of samples. In the ticks removed from people, number of positive samples was lesser; so, DNA of B. garinii was detected in 24.2%, B. afzelii in 6.9%, and B. miyamotoi in 5.6% of samples. Mixed infection with two Borrelia species was recorded, and DNA of B. mivamnotoi more often detected simultaneously with DNA of B. garinii.  相似文献   

19.
The hard tick Ixodes ricinus (Ixodidae) is the sole animal thus far shown to harbour an intra-mitochondrial bacterium, which has recently been named Midichloria mitochondrii. The objectives of this work were (i) to screen ixodid ticks for Midichloria-related bacteria and (ii) to determine whether these bacteria exploit the intra-mitochondrial niche in other tick species. Our main goal was to discover further models of this peculiar form of symbiosis. We have thus performed a PCR screening for Midichloria-related bacteria in samples of ixodid ticks collected in Italy, North America and Iceland. A total of 7 newly examined species from 5 genera were found positive for bacteria closely related to M. mitochondrii. Samples of the tick species Rhipicephalus bursa, found positive in the PCR screening, were analysed with transmission electron microscopy, which revealed the presence of bacteria both in the cytoplasm and in the mitochondria of the oocytes. There is thus evidence that bacteria invade mitochondria in at least 2 tick species. Phylogenetic analysis on the bacterial 16S rRNA gene sequences generated from positive specimens revealed that the bacteria form a monophyletic group within the order Rickettsiales. The phylogeny of Midichloria symbionts and related bacteria does not appear completely congruent with the phylogeny of the hosts.  相似文献   

20.
Ixodes persulcatus serves as a tick vector for Borrelia garinii and Borrelia afzelii in Japan; however, unidentified spirochetes have been isolated from other species of ticks. In this study, 13 isolates from ticks (6 from Ixodes tanuki, 6 from Ixodes turdus, and 1 from Ixodes columnae) and 3 isolates from voles (Clethrionomys rufocanus) were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, rRNA gene restriction fragment length polymorphism, partial sequencing of the outer surface protein C (OspC) gene, whole DNA-DNA hybridization, and 16S rRNA gene sequence comparison. All of the results revealed that these Borrelia strains clearly represent at least two new species. A third is also likely, although additional strains have to be isolated and characterized before a separate species is designated. We designated all isolates of I. tanuki and C. rufocanus as group Hk501 and all isolates of I. turdus as group Ya501. Phylogenetic analysis based on 16S rRNA gene sequences distinguished these Borrelia strains from those belonging to hitherto known Borrelia species. Furthermore, the genomic groups, each with its own tick vectors with enzootic cycles, were quite different from each other and also from those of Lyme disease Borrelia species known to occur in Japan. The results of 16S rRNA gene sequence comparison suggest that the strain Am501 from I. columnae is related to group Hk501, although its level of DNA relatedness is less than 70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号