首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K S Khera 《Teratology》1985,31(1):129-153
Data from animal teratology studies were surveyed to determine whether embryo-fetal mortality and fetal malformations result from a primary action of the agent on the conceptus or if they are secondary to maternal toxicity--a consequence of administration with high dose levels of test chemicals. A fairly strong association between embryo-fetal mortality and maternal toxicity was revealed by analysis of data from hamsters, mice, rats, and rabbits in 234 studies of chemical and physical agents, of which 83 were conducted at both maternotoxic and nonmaternotoxic doses, 94 only at maternotoxic doses, and 49 at nonmaternotoxic doses. In the above studies, only nine chemicals (four each in hamsters and rabbits and one in rats) were reported to induce embryo-fetal deaths at apparently nonmaternotoxic doses. These findings tend to suggest a contributory role for maternal toxicity in the induction of embryo-fetal deaths. The previously reported hypothesis that certain fetal defects in mice may perhaps be caused by maternal toxicity was also found to be true in a review of data on hamsters, rats, and rabbits. Salient maternal toxicity-associated fetal malformations were exencephaly, encephalocele, micro- or anophalmia, and fused ribs in hamsters and defective (fused, missing, or extra) ribs, vertebrae, and sternebrae, ex-, an-, or microphthalmia, and cleft palate in rats and rabbits. These malformations occurred at low frequencies, generally with no readily apparent dose-response relationship. Presumptive evidence indicates that embryo-fetal deaths, and the above-mentioned fetal malformations in experimental animals, which in published literature are presently attributed to chemical induction for a large number of chemicals, may be a consequence of maternal toxicity per se.  相似文献   

2.
Intravenously administered Triton WR-1339, a nonionic surface active agent, has been used as an endogenous hyperlipemic agent since 1951. We expected Triton to increase food consumption to supply, at least partially, the energy and acetyl groups necessary for producing the hyperlipemic state. In this study, however, we observed that the rats injected intravenously with various dose levels of Triton decreased their voluntary food intake in a dose-related manner. Two other nonionic surface active agents, Tween 20 and Tween 80, given intravenously did not alter food intake. Further studies revealed that Triton WR-1339 administered intravenously 30 min before feeding by stomach tube resulted in a marked delay in the rate of gastric emptying which was also dose related. A delay in gastric emptying has previously been suggested as one mechanism that controls food intake. Tween 20 and Tween 80 did not alter the rate of gastric emptying. We suggest that the mechanism responsible for the decrease in voluntary food consumption in Triton WR-1339 injected rats may be due to the delay of gastric emptying in these animals.  相似文献   

3.
These studies evaluated the teratogenic potential of indole-3-acetic acid (IAA), a naturally occurring plant hormone, in CF-1 mice and Sprague-Dawley rats. Mice were given 5, 50, 200, or 500 mg IAA/kg/day by gavage on days 7 through 15 of gestation. Rats were given 50, 200, or 500 mg IAA/kg/day by gavage on days 7 through 15 of gestation. IAA was teratogenic in mice and rats at 500 mg/kg/day; cleft palate was induced in both species at this dose level. In mice, other malformations including exencephaly, ablepharia, dilated cerebral ventricles, and crooked tail were also observed. Mice given 500 mg/kg of IAA gained less than control mice during gestation; no evidence of maternal toxicity was observed in rats. IAA did not cause fetal resorptions in either species and was not teratogenic at dose levels below 500 mg/kg.  相似文献   

4.
BACKGROUND: These studies were conducted to evaluate the potential adverse effects of di-2-ethylhexyl terephthalate (DEHT) exposure on in utero development in mice and rats. In addition, a uterotrophic assay for estrogenic activity was conducted in sexually immature rats. METHODS: In the developmental toxicity studies, diet containing DEHT was fed to four groups of mated female Crl:CD(SD)IGS BR rats (25/group) from gestation day (GD) 0-20 or Crl:CD1(ICR) mice (25/group) from GD 0-18. Concentrations within the feed were 0, 0.3, 0.6, and 1.0% for the rats and 0, 0.1, 0.3, and 0.7% for the mice. Laparohysterectomies were carried out on the last day of exposure and the numbers of fetuses, early and late resorptions, total implantations, and corpora lutea were recorded. The fetuses were weighed, sexed, and examined for external, visceral and skeletal malformations, and developmental variations. The dose rate from dietary DEHT exposure was 0, 226, 458, and 747 mg/kg/day in the rats and 197, 592, and 1382 mg/kg/day in the mice for the control, low, mid, and high-exposure groups, respectively. RESULTS: DEHT exposure did not affect clinical observations. A slight reduction in body weight gain was noted in the high-dose level rat group; the remaining groups were unaffected. At necropsy, increased liver weights were noted in the high-dose rat group and the mid- and high-dose mouse groups. Mean numbers of implantation sites and viable fetuses, mean fetal weights, and mean litter proportions of preimplantation loss, early resorptions, late resorptions, and fetal sex ratios were unaffected by DEHT exposures. No test article-related malformations or variations were observed at any concentration level in the rat and mouse developmental toxicity studies. In the uterotrophic assay for estrogenic activity, sexually immature female rats received oral gavage doses 20, 200, or 2000 mg DEHT/kg bw/day from postnatal day (PND) 19-21. A slight reduction in rate of body weight gain was noted on the first day of dosing in the high dose group, but no other indications of toxicity were evident. DEHT exposure did not affect wet or blotted uterine weight parameters in any of these dose groups. The NOEL for developmental toxicity in rats was 747 mg/kg/day and 1382 mg/kg/day in mice. The NOEL for estrogenic activity was 2000 mg/kg/day. The NOEL for maternal toxicity was 458 mg/kg/day in rats and 197 mg/kg/day in mice. CONCLUSIONS: The lack of adverse developmental effects with DEHT exposure are in contrast to the adverse developmental effects noted after di-2-ethylhexyl phthalate (DEHP) exposure. The difference between the effects noted with the ortho-constituent (DEHP) and the lack of effects reported with the para-constituent (DEHT) is due most likely to differences in metabolism and the formation of the stable monoester, mono-2-ethylhexyl phthalate (MEHP) from the DEHP moiety.  相似文献   

5.
Numerous studies have suggested that single-day intraperitoneal (IP) injection of inorganic arsenic results in failure of neural tube closure and other malformations in rats, hamsters, and mice. Most of these studies involved treatment of limited numbers of animals with maternally toxic doses of arsenic (generally As(V)), without defining a dose-response relationship. In the present Good Laboratory Practice-compliant study, sodium arsenate (As(V)) was administered IP and arsenic trioxide (As(III)) was administered either IP or orally (by gavage) on gestational day 9 to groups of 25 mated Crl:CD(R)(SD)BR rats. Only at dose levels that caused severe maternal toxicity, including lethality, did IP injection of arsenic trioxide produce neural tube and ocular defects; oral administration of higher doses of arsenic trioxide caused some maternal deaths but no treatment-related fetal malformations. In contrast, IP injection of similar amounts of sodium arsenate (based on the molar amount of arsenic) caused mild maternal toxicity but a large increase in malformations, including neural tube, eye, and jaw defects. In summary, neural tube and craniofacial defects were observed after IP injection of both As(V) and As(III); however, no increase in malformations was seen following oral administration of As(III), even at maternally lethal doses. These results demonstrate that the frequently cited association between prenatal exposure to inorganic arsenic and malformations in laboratory animals is dependent on a route of administration that is not appropriate for human risk assessment.  相似文献   

6.
BACKGROUND: The developmental toxicity potential of vorinostat (suberoylanilide hydroxamic acid [SAHA], ZOLINZA), a potent inhibitor of histone deacetylase (HDAC), was assessed in Sprague-Dawley rats and Dutch Belted rabbits. HDAC inhibitors have been shown to mediate the regulation of gene expression, induce cell growth, cell differentiation, and apoptosis of tumor cells. Range-finding studies established oral dose levels of 5, 15, or 50 mg/kg/day and 20, 50, or 150 mg/kg/day in rats and rabbits, respectively. METHODS: Animals were dosed on Gestation Days 6-20 or 7-20, respectively, with litter/fetal parameters evaluated on GD 21 and 28, respectively. Separate studies evaluated toxicokinetic parameters at the mid- and high-dose levels. RESULTS: There was no maternal toxicity observed at the highest dose levels; however, hematology and serum biochemistry changes were characterized in the range-finding studies. Vorinostat did not induce morphological malformations in either rat or rabbit fetuses. In rats, drug-related developmental toxicity was observed only in the high-dose group and consisted of markedly decreased fetal weight and increases in fetuses with a limited number of skeletal variations. In rabbits, drug-related developmental toxicity was also observed only in the high-dose group and consisted of slightly decreased fetal weight and increases in fetuses with a short 13th rib and incomplete ossification of metacarpals. Maternal exposures to vorinostat based on AUC and Cmax values were comparable at the high-dose levels of both species. Rabbits tolerated higher dosages probably due to more extensive metabolism. Maternal concentrations of vorinostat were approximately 1,000-fold above the known in vitro HDAC inhibitory concentration. CONCLUSIONS: Review of previous work with valproic acid, another HDAC inhibitor, suggest that the developmental toxicity profiles of these 2 compounds are not the result of HDAC inhibition but involve other mechanisms.  相似文献   

7.
Epoxiconazole (EPX; CAS‐No. 133855‐98‐8) is a triazole class–active substance of plant protection products. At a dose level of 50 mg/kg bw/day, it causes a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (gestation day [GD] 7–18 or 21), as reported previously (Taxvig et al., 2007, 2008) and confirmed in these studies. Late fetal resorptions occurred in the presence of significant maternal toxicity such as clear reduction of corrected body weight gain, signs of anemia, and, critically, a marked reduction of maternal estradiol plasma levels. Furthermore, estradiol supplementation at dose levels of 0.5 or 1.0 μg/animal/day of estradiol cyclopentylpropionate abolished the EPX‐mediated late fetal resorptions. No increased incidences of external malformations were found in rats cotreated with 50 mg/kg bw/day EPX and estradiol cyclopentylpropionate, indicating that the occurrence of malformations was not masked by fetal mortality under the study conditions. Overall, the study data indicate that fetal mortality observed in rat studies with EPX is not the result of direct fetal toxicity but occurs indirectly via depletion of maternal estradiol levels. The clarification of the human relevance of the estrogen‐related mechanism behind EPX‐mediated late fetal resorptions in rats warrants further studies. In particular, this should involve investigation of the placenta (Rey Moreno et al., 2013), since it is the materno‐fetal interface and crucial for fetal maintenance. The human relevance is best addressed in a species which is closer to humans with reference to placentation and hormonal regulation of pregnancy, such as the guinea pig (Schneider et al., 2013). Birth Defects Res (Part B) 98:247–259, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
BACKGROUND: Artesunate has been reported to cause embryolethality and malformations when administered orally to rats during organogenesis. The purpose of this study was to determine the most sensitive period(s) for the induction of these effects in order to provide clues about possible mechanisms and to identify a short treatment regimen for further studies. METHODS: Pregnant rats were orally administered artesunate (10, 17 or 30 mg/kg/day) on single or multiple days of gestation. Cesarean sections and fetal evaluations were conducted on Day 21 postcoitum (pc). RESULTS: Embryolethality, cardiovascular malformations and a syndrome of skeletal defects were observed after single doses on days 10 to 14 pc, while no developmental effects were observed before (day 9 pc) or after (days 16 or 17 pc) that period. The most sensitive day for embryo lethality was day 11 pc, where lethality occurred with a very steep dose response (postimplantation loss was ~15% at 10 mg/kg and 100% at 17 mg/kg/day). The most sensitive day for the induction of malformations was day 10 pc. Malformations tended to occur in partially resorbed litters and included cardiovascular defects and bent and misshapen long bones and scapulae. CONCLUSIONS: The sensitive window for developmental toxicity of artesunate in the rat was identified as days 10 to 14 pc. Single oral doses produced embryolethality and similar cardiovascular and skeletal malformations as previously reported in longer term dosing experiments. These single dose treatment regimens could be useful to further investigate the mechanistic basis for artesunate‐induced developmental toxicity. Birth Defects Research (Part B) 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
BACKGROUND: The developmental toxicity of flusilazole was studied in CD-1 mice after oral administration. METHODS: Pregnant mice were given flusilazole at doses of 0 (corn oil), 10, 20, and 40 mg/kg/day, by gavage, on gestational days (GD) 6-15. RESULTS: Maternal toxicity, as evidenced by reduction in body weight gain and signs of toxicity, was observed at the middle- and high-dose groups. No significant incidence of resorptions or death was observed in any of dose groups. There was a pronounced reduction in fetal weight, which was significantly lower than control from 20 and 40 mg/kg/day. There was no significant increase in the incidence of fetuses with external or visceral malformations in any of dose groups, but there was a significant increase in the incidence of skeletal malformations was observed at 20 and 40 mg/kg/day. CONCLUSIONS: The results of this study reported marked maternal toxicity, growth retardation, and skeletal abnormalities in the mid- and high-dose groups. It seems likely that marked maternal toxicity contributed to the observed alterations in fetal growth retardation and skeletal development. The no-observed-effect level in the present study for maternal and developmental toxicity was 10 mg/kg/day.  相似文献   

10.
非水溶性甲胺磷降解酶的检测   总被引:3,自引:0,他引:3  
甲胺磷农药是一种水溶性广谱、剧毒杀虫剂,化学名称:O,S-二甲基胺基硫代磷酸酯.目前,它在我国的生产和使用量已相当可观,并由此造成了严重的生态破坏和环境污染[1].近几年,作者针对上述问题,结合国内外对甲胺磷代谢和有关酶知识缺乏了解的实际[2],开展...  相似文献   

11.
Y J Kang  L Zolna  J M Manson 《Teratology》1986,34(2):213-223
Administration of nitrofen (2,4-dichloro-4'-nitrodiphenyl ether) during organogenesis in rodents produces neonatal lethality accompanied by lung hypoplasia, diaphragmatic hernias, heart anomalies, and hydronephrosis. Different strains of rats, Long Evans Hooded (LEH) and Sprague-Dawley (SD), are reported to have different malformation responses to prenatal exposure, which could be due to true strain differences, to different levels and times of exposure, or to the use of different methods for detecting visceral malformations. In the present study, LEH, SD, and "virus-antibody-negative" SD (VAN-SD) rats were identically exposed to 0, 6.25, 12.5, or 25 mg/kg/day of nitrofen by gavage in corn oil on days 6 15 of gestation. At term, half of the litter was examined by the Wilson method of razorblade sectioning and the remainder by a modified Staples method of fresh visceral examination. The two methods were equally sensitive for detecting diaphragm, kidney, and lung anomalies, whereas heart malformations were more frequently identified with fresh visceral examination. The frequency of total malformations did not vary across strains at any dose, but there were substantial differences in the pattern of malformations in each strain. SD and VAN-SD rats responded similarly for all malformations, but had significantly higher incidences of diaphragm and lung anomalies than LEH rats. Conversely, LEH rats had significantly elevated levels of kidney anomalies compared to SD and VAN-SD rats, whereas frequency of heart malformations was low and comparable across strains. These results suggest that true strain differences exist in the pattern of malformation produced by prenatal exposure to nitrofen that may be based on genetic differences in embryonic susceptibility.  相似文献   

12.
BACKGROUND: Emodin, a widely available herbal remedy, was evaluated for potential effects on pregnancy outcome. METHODS: Emodin was administered in feed to timed-mated Sprague-Dawley (CD) rats (0, 425, 850, and 1700 ppm; gestational day [GD] 6-20), and Swiss Albino (CD-1) mice (0, 600, 2500 or 6000 ppm; GD 6-17). Ingested dose was 0, 31, 57, and approximately 80-144 mg emodin/kg/day (rats) and 0, 94, 391, and 1005 mg emodin/kg/day (mice). Timed-mated animals (23-25/group) were monitored for body weight, feed/water consumption, and clinical signs. At termination (rats: GD 20; mice: GD 17), confirmed pregnant dams (21-25/group) were evaluated for clinical signs: body, liver, kidney, and gravid uterine weights, uterine contents, and number of corpora lutea. Fetuses were weighed, sexed, and examined for external, visceral, and skeletal malformations/variations. RESULTS: There were no maternal deaths. In rats, maternal body weight, weight gain during treatment, and corrected weight gain exhibited a decreasing trend. Maternal body weight gain during treatment was significantly reduced at the high dose. In mice, maternal body weight and weight gain was decreased at the high dose. CONCLUSIONS: Prenatal mortality, live litter size, fetal sex ratio, and morphological development were unaffected in both rats and mice. At the high dose, rat average fetal body weight per litter was unaffected, but was significantly reduced in mice. The rat maternal lowest observed adverse effect level (LOAEL) was 1700 ppm; the no observed adverse effect level (NOAEL) was 850 ppm. The rat developmental toxicity NOAEL was > or =1700 ppm. A LOAEL was not established. In mice, the maternal toxicity LOAEL was 6000 ppm and the NOAEL was 2500 ppm. The developmental toxicity LOAEL was 6000 ppm (reduced fetal body weight) and the NOAEL was 2500 ppm.  相似文献   

13.
The antioxidative effects of vitamin E (VE) are well known and have been demonstrated in in vitro studies. Since we previously observed that dextran sulfate was markedly more protective of porcine versus bovine aortic endothelial cells when damaged by hydrogen peroxide (H2O2), our objectives were to determine if a similar species difference could be observed with VE. The effects of VE or Trolox (a more water-soluble VE) against oxygen-derived free radical (OFR) injury produced by H2O2 was studied in porcine aortic endothelium (PAE) vs. bovine aortic endothelium (BAE) and bovine brain microvessel endothelium (BBME). VE or Trolox was added to culture medium for at least 24 h prior or immediately prior to H2O2 addition. In PAE, pretreatment with VE dissolved in either ethanol (VE-EtOH) or Tween 20 (VE-Tween 20), or Trolox dissolved in DMSO (Trolox-DMSO) was protective, shown by increased percent viable cells and reduced lactate dehydrogenase (LDH) release. EtOH, Tween 20 or DMSO alone was protective in PAE although DMSO or Tween 20 alone was less effective than when added with VE. VE-Tween 20 or Trolox-DMSO protected PAE when added just prior to H2O2 injury, but protection was significantly less than with pretreatment. DMSO immediately prior to H2O2 injury had no protective effect. Tween 20 immediately prior resulted in complete cell death. In BAE and BBME, pretreatment with VE-EtOH, EtOH, Trolox-DMSO, or DMSO alone had little or no protective effect. Pretreatment with VE-Tween 20 or Tween-20 alone was protective of BAE with Tween 20 being more effective than VE-Tween 20 suggesting that Tween 20 was the protective agent. These studies show that the protective effects of VE and Trolox as well as DMSO, EtOH, and Tween-20 are species dependent.  相似文献   

14.
The biological effects of drug vehicles are often overlooked, often leading to artifacts in acetaminophen-induced liver injury assessment. Therefore, we decided to investigate the effect of dimethylsulfoxide, dimethylformamide, propylene glycol, ethanol, and Tween 20 on acetaminophen-induced liver injury. C57BL/6 male mice received a particular drug vehicle (0.6 or 0.2 mL/kg, i.p.) 30 min before acetaminophen administration (300 mg/kg, i.p.). Control mice received vehicle alone. Liver injury was assessed by measuring the concentration of alanine aminotransferase in plasma and observing histopathological changes. The level of reduced glutathione (GSH) was assessed by measuring total nonprotein hepatic sulfhydrils. Dimethylsulfoxide and dimethylformamide (at both doses) almost completely abolished acetaminophen toxicity. The higher dose of propylene glycol (0.6 mL/kg) was markedly protective, but the lower dose (0.2 mL/kg) was only slightly protective. These solvents also reduced acetaminophen-induced GSH depletion. Dimethylformamide was protective when given 2 h before or 1 h after acetaminophen administration, but was ineffective if given 2.5 h after acetaminophen. Ethanol at the higher dose (0.6 mL/kg) was partially protective, whereas ethanol at the lower dose (0.2 mL/kg) as well as Tween 20 at any dose had no influence. None of the vehicles (0.6 mL/kg) was hepatotoxic per se, and none of them was protective in a model of liver injury caused by D-galactosamine and lipopolysaccharide.  相似文献   

15.
Atrazine (ATR), hydroxyatrazine (OH‐ATR), and the three chloro metabolites of ATR (deethylatrazine [DEA], deisopropylatrazine [DIA], diaminochlorotriazine [DACT]) were evaluated for developmental effects in rats and rabbits. Three developmental toxicity studies were conducted on ATR in rats (two studies) and rabbits and a developmental toxicity study was conducted in rats for each of the four ATR metabolites DEA, DIA, DACT, and OH‐ATZ. ATR administration by gavage to pregnant rats and rabbits from implantation (gestation day [GD] 6 in rat, GD 7 in rabbit) through closure of the palate (GD 15 in rat and GD 19 in rabbit) did not statistically significantly alter the incidence of developmental abnormalities or malformations at dose levels up to 100 (rat) or 75 (rabbit) mg/kg bw/day. There were no effects on developmental toxicity parameters for DEA, DIA, DACT, or OH‐ATR at oral dose levels up to 100, 100, 150, or 125 mg/kg bw/day, respectively, with the exception of reductions in fetal body weight by DACT and OH‐ATR in the presence of decreased maternal body weight gain. ATR did not adversely affect developmental end points in a two‐generation study conducted in rats exposed to dose levels up to 500 ppm (38.7 mg/kg/day) in the diet. The 500‐ppm dose level resulted in significantly reduced maternal body weight gain. Overall, data show that neither ATR nor its metabolites statistically significantly affected rat or rabbit embryo‐fetal development even at dose levels producing maternal toxicity.  相似文献   

16.
Artemether (AM), a highly effective treatment for multidrug-resistant malaria and a component of artemisinin combination therapy, has been associated with some neurotoxicity following repeated high doses. This study was aimed at investigating the effect of AM on pentobarbitone sleep and electrical activities in rats. Wistar rats received AM i.p. at 3 dose levels: 1.5, 7.5, and 15 mg/kg, whereas control rats received 0.2 mL of the vehicle (3% v/v Tween 80). AM administered 20 min before pentobarbitone had no significant effect on the onset and duration of sleep. However, after a 7-day pretreatment, AM dose-dependently prolonged pentobarbitone sleep, as did chloramphenicol. Electroencephalogram and electromyogram recordings 20 min after pretreatment showed that AM (15 mg/kg) exhibited inhibitory activity similar to chlorpromazine as opposed to the excitatory effect of amphetamine. When pretreated for 7 days, rats receiving 1.5 mg/kg AM also showed inhibitory activity of the cortical centres, whereas desynchronization of the optic tectum and reticular formation was observed in rats pretreated with 7.5 and 15 mg/kg AM. The present data suggest that although the therapeutic equivalent dose of 1.5 mg/kg AM had no appreciable effects on pentobarbitone sleep but caused reduced electrical activity in rats, higher doses have more profound effects on both indices.  相似文献   

17.
The effects of dietary boric acid on bone strength in rats   总被引:4,自引:0,他引:4  
The effects of dietary boron (B) (from boric acid [BA]) on bone strength were evaluated using male F344 rats. B was administered by dietary admixture of BA to NIH-07 feed at concentrations of 200, 1000, 3000, and 9000 ppm. The latter two levels were found in previous studies to be reproductively toxic to both males and the developing fetus. The first two levels are below and just at, respectively, the levels for producing fetal malformations, and are below the dose required to produce male reproductive toxicity. Resistance to destructive testing was measured on femora, tibiae, and lumbar vertebrae. Although femur and tibia resistance to bending force were not affected by any amount of dietary B, vertebral resistance to a crushing force was increased by ≈10%, at all dose levels (200-9000 ppm). These data show that even levels of BA that are not reproductively toxic can affect the strength of the axial skeleton in rats.  相似文献   

18.
In contrast to earlier studies conducted at lower dose levels, 2AAF is shown to induce a positive UDS response in the liver of mice dosed orally at dose levels between 500 and 1000 mg/kg. Similarly exposed mice had low levels of 2AAF-related hepatic DNA adducts at dose levels in the range 10-1000 mg/kg 2AAF, as determined by 32P-postlabelling analysis. It is concluded that the attenuated UDS response observed in the mouse liver, as compared to the rat liver, is due primarily to metabolic differences between these two species, coupled to a reduced capacity for UDS in the mouse liver for a given level of total 2AAF-related adducts per unit of DNA. These observations are compared and contrasted with identical studies conducted in the rat and reported in the preceding paper (Gallagher et al., 1991).  相似文献   

19.
BACKGROUND: The potential embryotoxic and teratogenic effects of decabromodiphenyl ethane (DBDPEthane; CASRN 84852–53–9) were evaluated in prenatal developmental studies using rats and rabbits and performed in accordance with international guidelines and Good Laboratory Practice standards. Preliminary dose‐range‐finding studies were conducted, which indicated doses up to 1,250 mg/kg‐day were well tolerated by both rats and rabbits. METHODS: For the developmental studies, animals were administered DBDPEthane via gavage at dosage levels of 0, 125, 400, or 1,250 mg/kg‐day from gestation day (GD) 6 through 15 for rats and GDs 6 through 18 for rabbits. All female rats and rabbits were sacrificed on GD 20 or GD 29, respectively, and subjected to cesarean section. Fetuses were individually weighed, sexed, and examined for external, visceral and skeletal abnormalities. RESULTS: No treatment‐related mortality, abortions, or clinical signs of toxicity were observed during the study. Body weights, body weight gain, and food consumption were not affected by treatment. No significant internal abnormalities were observed in either species on necropsy. Cesarean section parameters were comparable between control and treated groups. No treatment‐induced malformations or developmental variations occurred. CONCLUSIONS: Based on these results, no evidence of maternal toxicity, developmental toxicity, or teratogenicity was observed in rats or rabbits treated with DBDPEthane at dosage levels up to 1,250 mg/kg‐day. Birth Defects Res (Part B) 89:139–146, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Cyclophosphamide (CP) administered ip to pregnant mice on day 10 of gestation (day of plug = day 0) is teratogenic (exencephaly, cleft palate, and limb malformations) at 20 mg/kg and embryolethal at higher doses. In the present study, CP was administered at 1, 5, 10, or 20 mg/kg on day 10 of gestation. Embryos were removed at 8 and 28 hr postdosing, and two embryos from each litter were immediately stained with Nile blue sulfate (NBS) to identify areas of cell death. The remaining embryos were frozen and forelimb buds subsequently removed for flow cytometric (FCM) analysis of the cellular DNA synthetic cycle. Additional litters were examined near term (day 17) for morphological abnormalities; these data were correlated with embryonic toxicity as detected by NBS staining and FCM analysis. Only the highest dose produced malformations. In marked contrast, a dose-related increase in the percentage of limb bud cells in the S (DNA synthetic) phase of the cell cycle was detectable at all doses. Inhibition of DNA synthesis was detected at all doses 8 hr post exposure and persisted through 28 hr for doses greater than or equal to 10 mg/kg. NBS staining indicated increased cell death in the alar plate of the neural tube 28 hr after exposure to 10 mg/kg CP and generally increased cell death in areas of rapid cell proliferation throughout the embryo at 20 mg/kg. The absence of an overt teratogenic response at dose levels that produced significant perturbation of the cell cycle indicates that a measure of embryonic damage can be compensated for or repaired. The implications of these findings for the existence of thresholds in developmental toxicity are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号