首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The progressive stages in Bdellovibrio bacteriovorus penetration into two strains of Escherichia coli were examined by use of electron microscopic techniques. The initial change observed in the ultrastructure of the host following parasitic attack was the swelling of the cell envelope at the site of attachment. The Bdellovibrio then appeared to pierce the center of this swelling, forming a pore in the outer wall layers of the host. The edges of this entry pore constricted the Bdellovibrio throughout its penetration into the host cell. Although partial disruption of the cytoplasmic membrane was always apparent, the parasite did not appear to actively penetrate through this barrier. An attempt is made to correlate the fine structural changes involved in penetration with the physiological data that have accumulated to date.  相似文献   

2.
Bacteriovorax marinus SJ is a predatory delta-proteobacterium isolated from a marine environment. The genome sequence of this strain provides an interesting contrast to that of the terrestrial predatory bacterium Bdellovibrio bacteriovorus HD100. Based on their predatory lifestyle, Bacteriovorax were originally designated as members of the genus Bdellovibrio but subsequently were re-assigned to a new genus and family based on genetic and phenotypic differences. B. marinus attaches to Gram-negative bacteria, penetrates through the cell wall to form a bdelloplast, in which it replicates, as shown using microscopy. Bacteriovorax is distinct, as it shares only 30% of its gene products with its closest sequenced relatives. Remarkably, 34% of predicted genes over 500 nt in length were completely unique with no significant matches in the databases. As expected, Bacteriovorax shares several characteristic loci with the other delta-proteobacteria. A geneset shared between Bacteriovorax and Bdellovibrio that is not conserved among other delta-proteobacteria such as Myxobacteria (which destroy prey bacteria externally via lysis), or the non-predatory Desulfo-bacteria and Geobacter species was identified. These 291 gene orthologues common to both Bacteriovorax and Bdellovibrio may be the key indicators of host-interaction predatory-specific processes required for prey entry. The locus from Bdellovibrio bacteriovorus is implicated in the switch from predatory to prey/host-independent growth. Although the locus is conserved in B. marinus, the sequence has only limited similarity. The results of this study advance understanding of both the similarities and differences between Bdellovibrio and Bacteriovorax and confirm the distant relationship between the two and their separation into different families.  相似文献   

3.
Prolyl-phenylalanine-specific serine protease (dentilisin) is a major extracellular protease produced by Treponema denticola. The gene, prtP, coding for the protease was recently cloned and sequenced (K. Ishihara, T. Miura, H. K. Kuramitsu, and K. Okuda, Infect. Immun. 64:5178–5186, 1996). In order to determine the role of this protease in the physiology and virulence of T. denticola, a dentilisin-deficient mutant, K1, was constructed following electroporation with a prtP-inactivated DNA fragment. No chymotrypsin-like protease activity was detected in the dentilisin-deficient mutant. In addition, the high-molecular-mass oligomeric protein characteristic of the outer sheath of the organism decreased in the mutant. Furthermore, the hydrophobicity of the mutant was decreased, and coaggregation of the mutant with Fusobacterium nucleatum was enhanced compared to that of the wild-type organism. The results obtained with a mouse abscess model system indicated that the virulence of the mutant was attenuated relative to that of the wild-type organism. These results suggest that dentilisin activity plays a major role in the structural organization of the outer sheath of T. denticola. The loss of dentilsin activity and the structural change in the outer sheath affect the pathogenicity of T. denticola.  相似文献   

4.
5.
In both freeze-etched and critical-point dried preparations examined by transmission and scanning electron microscopy, respectively, the outer surfaces of the cells of Spirillum serpens VHL assume a wrinkled appearance 10–15 min after challenge by Bdellovibrion bacteriovorus 109D. This wrinkling effect is believed (on circumstantial evidence) to be caused by the bdellovibrio's disruption of the cell wall lipoprotein of the Spirillum. With the exception of those topological changes caused by wrinkling, the outer membrane of the Spirillum cell wall retains a normal appearance as viewed in freeze-etched preparations, even after the Spirillum cell has been converted into a bdelloplast. Although the peptidoglycan layer of the Spirillum cell presumably is weakened somewhat by the invading Bdellovibrio, evidence obtained from freeze-fractured preparations of Spirillum bdelloplasts suggests that the peptidoglycan remains as a discrete cell wall layer, even though the Spirillum cell wall apparently has lost much of its rigidity. That the peptidoglycan backbone remains essentially intact, even after the Spirillum cell has been entered by the Bdellovibrio, is supported by the observation that the soluble amino sugar content of the culture medium, as determined by chemical analysis, does not rise even 5.0 h after the association of the Bdellovibrio with the Spirillum has begun.  相似文献   

6.
7.
B. Büdel  E. Rhiel 《Protoplasma》1987,139(2-3):145-152
Summary Four fruticose lichens of different genera, all belonging to the cyanolichen familyLichinaceae were studied by ultrathin sectioning and freeze-fracturing/-etching in order to see details in the structure of the photobiont-mycobiont interface. Within the haustorial region, the fibrillar sheath of the photobiont was almost absent and the thickness of the fungal cell wall was strongly reduced.The wavy outline of the cytoplasmic membrane in haustorial cells, which is so obvious in ultrathin sections, was found to be an artifact,i.e., originating during specimen preparation, it was not found in freeze-fractured samples.Invaginations of the fungal cytoplasmic membrane that were 25–125nm in width and 50–800 nm in length occurred in ultrathin sections and freeze-fractured samples. The invaginations were located within the cytoplasmic membrane of haustorial and non-haustorial cells.No differences between freshly collected and rewetted dry herbarium specimens could be detected by means of transmission electron microscopy.  相似文献   

8.
9.
Flagella of Helicobacter pylori were isolated from intact organisms by shearing and differential centrifugation. Treatment of the flagella with the detergent Triton X-100 removed the flagellar sheath, which was confirmed by electron microscopy, and the remaining naked flagella were shown by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to consist primarily of a single 54 kilodalton (kDa) polypeptide. This was confirmed by immunogold labelling and electron microscopy of detergent treated whole organisms, using a mouse antiserum specific for the 54 kDa polypeptide. Polypeptides solubilised from crude flagellar preparations by detergent treatment were found to have molecular weights of 26, 30, 58, 62, 66 and 80 kDa. These polypeptides are possible components of the flagellar sheath and they may represent outer membrane proteins, based on the assumption that the flagellar sheath is related in composition to the outer membrane of the organism. Analysis and definition of these components of the surface structures of the organism are important in understanding the interaction between the organism and its host in pathogenesis.  相似文献   

10.
Several wild-type isolates of marine bdellovibrios formed stable bdelloplasts when they infected gram-negative bacterial prey under certain culture conditions. Synchronous predator-prey cultures and low nutrient concentrations increased the yield of stable bdelloplasts. The bdellovibrio cells retained in the stable bdelloplasts showed a high survival capacity in nutrient-depleted saline solution (10% viable Bdellovibrio cells after 3 months at 25°C), whereas Bdellovibrio attack-phase cells kept under the same starvation conditions lost viability more quickly (1% viable cells after 48 h). The addition of yeast extract to a stable bdelloplast suspension induced lysis of the bdelloplasts and release of motile infecting attack-phase Bdellovibrio cells. Other substances, such as free amino acids, protein hydrolysates, NH4+, carbohydrates, and organic amines, did not induce such a release. Stable bdelloplasts were highly hydrophobic and had a lower endogenous respiration rate than attack-phase cells. In general, stable bdelloplasts were almost as sensitive to temperature changes, desiccation, sonication, tannic acid, and Triton X-100 treatment as attack-phase cells. Electron microscopy of stable bdelloplasts did not reveal any extra cell wall layer, either in the bdelloplast envelope or in the retained Bdellovibrio cells, unlike the bdellocysts of the soil bacterium Bdellovibrio sp. strain W. We propose that formation of stable bdelloplasts is a survival strategy of marine bdellovibrios which occurs in response to nutrient- and prey-poor seawater habitats.  相似文献   

11.
The genetic locus for the high chlorophyll fluorescent photosystem II-deficient maize mutant hcf*-3 has been definitively located to the nuclear genome. Fluorography of lamellar polypeptides labeled with [35S]methionine in vivo revealed the specific loss of a heavily labeled 32,000 dalton thylakoid membrane polypeptide as well as its chloroplast encoded precursor species at 34,000 daltons. Examination of freeze-fractured mesophyll and bundle sheath thylakoids from hcf*-3 revealed that both plastid types lacked the large EFs particles believed to consist of the photosystem II reaction center-core complex and associated light harvesting chlorophyll-proteins. The present evidence suggests that the synthesis or turnover/integration of the chloroplast-encoded 34,000 to 32,000 dalton polypeptide is under nuclear control, and that these polyipeptides are integral components of photosystem II which may be required for the assembly or structural stabilization of newly formed photosystem II reaction centers in both mesophyll and bundle sheath chloroplasts.  相似文献   

12.
Bdellovibrio are predatory bacteria that have evolved to invade virtually all Gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG) metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division). We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound β-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ΔBd0816 ΔBd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding) and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site). The Bd3459 active site (and by similarity the Bd0816 active site) can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that “regular” PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan structures to sculpt the prey cell into a stable intracellular niche for replication.  相似文献   

13.
Although flagellar motility is essential for the colonisation of the stomach by Helicobacter pylori, little is known about the regulation of flagellar biosynthesis in this organism. We have identified a gene in H. pylori, designated fliI, whose deduced amino acid sequence revealed extensive homology with the FliI/LcrB/InvC family of proteins which energise the export of flagellar and other virulence factors in several bacterial species. An isogenic mutant of fliI was non-motile and synthesised reduced amounts of flagellin and hook protein subunits. The majority (>99%) of mutant cells were completely aflagellate. These results suggest that FliI is a novel ATPase involved in flagellar export in H. pylori.  相似文献   

14.
The morphological features of the cell wall, plasma membrane, protoplasmic constituents, and flagella of Acetobacter suboxydans (ATCC 621) were studied by thin sectioning and negative staining. Thin sections of the cell wall demonstrate an outer membrane and an inner, more homogeneous layer. These observations are consistent with those of isolated, gram-negative cell-wall ghosts and the chemical analyses of gram-negative cell walls. Certain functional attributes of the cell-wall inner layer and the structural comparisons of gram-negative and gram-positive cell walls are considered. The plasma membrane is similar in appearance to the membrane of the cell wall and is occasionally found to be folded into the cytoplasm. Certain features of the protoplasm are described and discussed, including the diffuse states of the chromatinic material that appear to be correlated with the length of the cell and a polar differentiation in the area of expected flagellar attachment. Although the flagella appear hollow in thin sections, negative staining of isolated flagella does not substantiate this finding. Severe physical treatment occasionally produces a localized penetration into the central region of the flagellum, the diameter of which is much smaller then that expected from sections. A possible explanation of this apparent discrepancy is discussed.  相似文献   

15.
Bacterial Predator-Prey Interaction at Low Prey Density   总被引:3,自引:3,他引:0       下载免费PDF全文
A bacterial predator-prey interaction was studied using Bdellovibrio and bioluminescent prey bacteria. The attacking bdellovibrio causes decay of bioluminescence, which is correlated with bdellovibrio penetration into the prey. The behavior of the prey and predator populations over time was found to be well described by a Lotka-Volterra model. By using this model, the probability of bdellovibrio penetration after encountering a prey cell was found to be approximately 3.0%. The prey density required to give the bdellovibrios a 50% chance of survival was calculated to be at least 3.0 × 106 cells per ml, and the density required for population equilibria was calculated to be about 7 × 105 prey bacteria per ml. These values, not generally characteristic of natural habitats, suggest that the existence of Bdellovibrio in nature is limited to special ecological niches.  相似文献   

16.
The desert dampwood termite Paraneotermes simplicicornis harbors several species of obligately symbiotic protists that support its nutrition by fermenting lignocellulose. Among them are three morphotypes with the dexiotropic spiraling flagellar bands characteristic of Spirotrichonymphea (Parabasalia). The largest morphotype, characterized by an elongated cell apex with axial columella and internally positioned spiraling flagellar bands, was previously described as Spirotrichonympha polygyra. A smaller morphotype, with similarly internalized flagellar bands but a more rounded posterior without a protruding axostyle, was previously reported but not named. The smallest morphotype has surface flagellar bands and can attach to other protist cells by its apex. In this study, we combine light microscopy of live specimens and 18S rRNA gene sequencing of individually isolated cells to better understand the diversity of symbionts in P. simplicicornis. We found that S. polygyra branches distantly from true Spirotrichonympha, which are associated with Reticulitermes termites. Thus, we propose the new genus Cuppa to accommodate C. polygyra n. comb. (type species) and the similar but smaller morphotype Cuppa taenia n. sp. The undescribed smallest morphotype can be excluded from all previously described Spirotrichonymphea genera by molecular and behavioral evidence, so we propose Fraterculus simplicicornis n. gen., n. sp., to accommodate this organism.  相似文献   

17.
The LmxGT1 glucose transporter is selectively targeted to the flagellum of the kinetoplastid parasite Leishmania mexicana, but the mechanism for targeting this and other flagella-specific membrane proteins among the Kinetoplastida is unknown. To address the mechanism of flagellar targeting, we employed in vivo cross-linking, tandem affinity purification, and mass spectrometry to identify a novel protein, KHARON1 (KH1), which is important for the flagellar trafficking of LmxGT1. Kh1 null mutant parasites are strongly impaired in flagellar targeting of LmxGT1, and trafficking of the permease was arrested in the flagellar pocket. Immunolocalization revealed that KH1 is located at the base of the flagellum, within the flagellar pocket, where it associates with the proximal segment of the flagellar axoneme. We propose that KH1 mediates transit of LmxGT1 from the flagellar pocket into the flagellar membrane via interaction with the proximal portion of the flagellar axoneme. KH1 represents the first component involved in flagellar trafficking of integral membrane proteins among parasitic protozoa. Of considerable interest, Kh1 null mutants are strongly compromised for growth as amastigotes within host macrophages. Thus, KH1 is also important for the disease causing stage of the parasite life cycle.  相似文献   

18.
Quadriflagellate zoospores ofChaetophora incrassata andPseudoschizomeris caudata have similar features including an appressed membrane between the pyrenoid matrix and the starch sheath, and identical flagellar apparatuses. Components of the flagellar apparatus include: directly opposed upper basal bodies, lower basal bodies in the clockwise absolute orientation, a grooved distal fiber, peripheral and terminal fibers between adjacent basal bodies, proximal fibers connecting the lower basal bodies to the X-membered rootlets two- and X-membered rootlets associated with electron-dense components, and at least one rhizoplast. The X-membered rootlets, are comprised of five microtubules inC. incrassata and four or five inP. caudata. These features of the flagellar apparatus suggest that the two algae are closely related, and together withStigeoclonium, Uronema, Draparnaldia andFritschiella, form a natural group, the Chaetophoraceae, Chaetophorales (sensu Mattox and Stewart).  相似文献   

19.
The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets remain largely uncharacterized. These doublet-specific structures introduce asymmetry into the axoneme and are likely important for the spatial control of local microtubule sliding. Here, we used cryo-electron tomography and doublet-specific averaging to determine the 3D structures of individual doublets in the flagella of two evolutionarily distant organisms, the protist Chlamydomonas and the sea urchin Strongylocentrotus. We demonstrate that, in both organisms, one of the nine doublets exhibits unique structural features. Some of these features are highly conserved, such as the inter-doublet link i-SUB5-6, which connects this doublet to its neighbor with a periodicity of 96 nm. We also show that the previously described inter-doublet links attached to this doublet, the o-SUB5-6 in Strongylocentrotus and the proximal 1–2 bridge in Chlamydomonas, are likely not homologous features. The presence of inter-doublet links and reduction of dynein arms indicate that inter-doublet sliding of this unique doublet against its neighbor is limited, providing a rigid plane perpendicular to the flagellar bending plane. These doublet-specific features and the non-sliding nature of these connected doublets suggest a structural basis for the asymmetric distribution of dynein activity and inter-doublet sliding, resulting in quasi-planar waveforms typical of 9+2 cilia and flagella.  相似文献   

20.
Chlamydomonas reinhardtii, a bi-flagellated green alga, is a model organism for studies of flagella or cilia related activities including cilia-based signaling, flagellar motility and flagellar biogenesis. Calcium has been shown to be a key regulator of these cellular processes whereas the signaling pathways linking calcium to these cellular functions are less understood. Calcium-dependent protein kinases (CDPKs), which are present in plants but not in animals, are also present in ciliated microorganisms which led us to examine their possible functions and mechanisms in flagellar related activities. By in silico analysis of Chlamydomonas genome we have identified 14 CDPKs and studied one of the flagellar localized CDPKs – CrCDPK3. CrCDPK3 was a protein of 485 amino acids and predicted to have a protein kinase domain at the N-terminus and four EF-hand motifs at the C-terminus. In flagella, CrCDPK3 was exclusively localized in the membrane matrix fraction and formed an unknown 20 S protein complex. Knockdown of CrCDPK3 expression by using artificial microRNA did not affect flagellar motility as well as flagellar adhesion and mating. Though flagellar shortening induced by treatment with sucrose or sodium pyrophosphate was not affected in RNAi strains, CrCDPK3 increased in the flagella, and pre-formed protein complex was disrupted. During flagellar regeneration, CrCDPK3 also increased in the flagella. When extracellular calcium was lowered to certain range by the addition of EGTA after deflagellation, flagellar regeneration was severely affected in RNAi cells compared with wild type cells. In addition, during flagellar elongation induced by LiCl, RNAi cells exhibited early onset of bulbed flagella. This work expands new functions of CDPKs in flagellar activities by showing involvement of CrCDPK3 in flagellar biogenesis in Chlamydomonas .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号